DOI: 10.5937/jaes0-29822
This is an open access article distributed under the CC BY 4.0
Volume 19 article 847 pages: 731-741
A hardness-checking machine is a crucial tool in engineering studies, especially in mechanical and manufacturing processes. It is usually used to measure, calibrate, and standardize the quality of products. This study is based on
the field problem in Akebono Brake Astra, Indonesia, where more manual tools are used to meet product demands.
In consideration of this issue, a modified hardness checking tool with automatic operation has been developed. Using
automatic operation is beneficial in terms of time and cost efficiency in comparison with other manual tools. Automatic
tools apply the 3-axis system mechanism, using a Festo linear actuator with a servo motor. The testing capacity of
automatic devices is equal to more manual devices. The frame of the auto checking hardness machine is assessed
in this study by applying load variations. Drawing on other similar work on auto checking hardness machines, this paper
provides a comparison of various aluminum frame types based on different tensile strengths and cross-sectional
area values. The baseplate for hardness testing is also calculated. There are 9 testing points for calculating the use
of linear guides for the baseplate. The results show excellent tensile strength values, as well as a good displacement
and maximum stress.
1. Fedyukov, V., Chernov, V., Chernova, M. (2020). Strength of aged wood in old constructions. Journal of Applied Engineering Science, vol. 18, no. 1, 114 – 119, DOI: https://doi.org/10.5937/jaes18-23002
2. Maljković, M., Blagojević, I., Popović, V., Stamenković, D. (2018). Impact of the damper characteristics on the behavior of suspension system and the whole vehiclе. Journal of Applied Engineering Science, vol. 16, no. 3, 349-357, DOI: https://doi.org/10.5937/ jaes16-17342
3. Prabowo, A.R., Bahatmaka, A., Sohn, J.M. (2020). Crashworthiness characteristic of longitudinal deck structures against identified accidental action in marine environment: a study case of ship–bow collision. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 11, 584, DOI: https://doi.org/10.1007/s40430-020-02662-2
4. Sakuri, S., Surojo, E., Ariawan, D., Prabowo, A.R. (2020). Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments. Composites Communication, vol. 21, 100419, DOI: https://doi.org/10.1016/j. coco.2020.100419
5. Ariawan, D., Rivai, T.S., Surojo, E., Hidayatulloh, S., Akbar, H.I., Prabowo, A.R. (2020). Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alexandria Engineering Journal, vol. 59, no. 5, 3981-3989, DOI: https://doi.org/10.1016/j. aej.2020.07.005
6. Afridi, B.Z., Shahzadam K., Naqash, M.T. (2017). Mechanical properties of polypropylene fibers mixed cement-sand mortar. Journal of Applied Engineering Science, vol. 17, no. 2, 116 – 125, DOI: https://doi. org/10.5937/jaes17-19092
7. Prabowo, A.R., Cahyono, S.I., Sohn, J.M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, vol. 9, no. 5, 320-327, DOI: https://doi.org/10.1016/j. taml.2019.05.002
8. Guo, B., Zhang, L., Cao, L., Zhang, T., Jiang, F., Yan, L. (2018). The correction of temperature-dependent Vickers hardness of cemented carbide base on the developed high-temperature hardness tester. Journal of Materials Proceeding Technology, vol. 255, 426-433, DOI: https://doi.org/10.1016/j.jmatprotec.2017.12.041
9. Caesar, B.P.P., Hazimi, H., Sukanto, H., Prabowo, A.R. (2020). Development of novel design and frame structural assessment on Mitutoyo’s Auto Checking Hardness Machine using reverse engineering approach: series HR-522 hardness tester. Journal of Engineering Science and Technology, vol. 15, no. 2, 1296-1318, DOI:
10. Batan, I.M.L. (2012). Desain Produk. 1st Edition, Guna Widya, Surabaya (in Indonesian).
11. Husain, Z., Jan, H. (2019). Establishing a simulation model for optimizing the efficiency of the CNC machine using a reliability-centered maintenance approach. International Journal of Modeling, Simulation, and Scientific Computing, vol. 10, no. 6, 1950034, DOI: https://doi.org/10.1142/S179396231950034X
12. TA Instruments. Automated Hardness Tester Brochure, from https://www.tainstruments.com/aht/, accessed on 2020-12-08.
13. Wang, W., Zhang, Y., Li, C. (2017). Dynamic reliability analysis of linear guides in positioning precision. Mechanism and Machine Theory, vol. 116, 451 – 464, DOI: https://doi.org/10.1016/j.mechmachtheory.2017.06.011
14. Hong, C.C., Chang, C.L., Lin, C.Y. (2016). Static structural analysis of great five-axis turning-milling complex CNC machine. Engineering Science and Technology, an International Journal, vol. 19, no. 4, 1971-1984, DOI: https://doi.org/10.1016/j. jestch.2016.07.013
15. Francoisa, P., Palit, A., Gerbino, S., Ceglarek, D. (2019). A novel hybrid shell element formulation (QUAD+ and TRIA+): A benchmarking and comparative study. Finite Elements in Analysis and Design, vol. 166, 103319, DOI: https://doi.org/10.1016/j.finel.2019.103319
16. Hidayat, T., Nazaruddin, N., Syafri S. (2017). Perancangan dan analisis statik chassis kendaraan shell eco marathon tipe urban concept. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, vol. 4, no. 2, 1-6, DOI: - (in Indonesian).
17. Prabowo, A.R., Putranto, T., Sohn, J.M. (2019). Simulation of the behavior of a ship hull under grounding: Effect of applied element size on structural crashworthiness. Journal of Marine Science and Engineering, vol. 7, no. 8, 270, DOI: https://doi. org/10.3390/jmse7080270
18. Kõrgesaar, M, (2015). Modeling ductile fracture in ship structures with shell element. Aalto University, Espoo.
19. Buldgen, L., Sourne, H.L., Besnard, N., Rigo, P. (2012). Extension of the super-elements method to the analysis of oblique collision between two ships. Marine Structures, vol. 29, no. 1, 22-57, DOI: https:// doi.org/10.1016/j.marstruc.2012.08.002
20. Lee, Y.W., Woertz, J.C., Wierzbicki, T. (2004). Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification. International Journal of Mechanical Sciences, vol. 46, no. 5, 751-781, DOI: https://doi.org/10.1016/j. ijmecsci.2004.05.004
21. Simonsen, B.C., Lauridsen, L.P. (2000). Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere. International Journal of Impact Engineering, vol. 24, no. 10, 1017-1039, DOI: https://doi.org/10.1016/S0734-743X(00)00024-5
22. Muttaqie, T., Thang D.Q., Prabowo, A.R., Cho, S.R., Sohn, J.M. (2019). Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure. Structural Engineering and Mechanics,vol. 70, no. 4, 431-443, DOI: http://dx.doi.org/10.12989/ sem.2019.70.4.431
23. Misumi. MISUMI Automation Components, from https://us.misumi-ec.com/vona2/maker/misumi/ mech/, accessed on 2020-08-20.
24. El-Sammane, H., Ashry, A.H., Abou-leila, M., Arafa, W., Ahmad, U. (2012). A nuclear tester for micro-hardness measurement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 290, 39- 42, DOI: https://doi.org/10.1016/j.nimb.2012.08.021
25. Beer, F.P., Johnston, E.R., Dewolf, J.T., Mazurek, D.F. (2012). Mechanics of Materials, 6th edition. McGraw-Hill, New York.
26. Dieter, G.E., Linda C.S. (2021). Engineering Design, 6th edition. McGraw-Hill, New York.
27. Caesar, B.P.P., Istanto, I., Pratama, P.S., Cho, J.H., Prabowo, A.R., (2020). Improvement of auto checking hardness machine using several material series of aluminum structural frame: Case study on mitutoyo hr-522 hardness tester. Procedia Structural Integrity, vol. 27, 117-124, DOI: https://doi.org/10.1016/j.prostr.2020.07.016
28. Wredenberg, F., Larsson, P. (2009). Scratch testing of metals and polymer: Experiments and numerics. Wear, vol. 266, no. 1-2, 76-83, DOI: https://doi. org/10.1016/j.wear.2008.05.014
29. Mutalib, A.A., Mussa, M.H., Abdulghafoor A.M. (2018). Finite element analysis of composite plate girders with a corrugated web. Journal of Engineering Science and Technology, vol. 13, no. 9, 2978- 2994, DOI: -
30. Marjanović, M., Marković, N., Damnjanović, E., Cvetković, R. (2020). Three-dimensional stress analysis and design of cross-laminated timber panels using full-layerwise-theory-based finite element method. Thin-Walled Structures, vol. 157, 107156, DOI: https://doi.org/10.1016/j.tws.2020.107156
31. Castaldo, P., Gino, D., Bertagnoli, G., Mancini, G. (2018). Partial safety factor for resistance model uncertainties in 2D non-linear finite element analysis of reinforced concrete structures. Engineering Structures, vol. 176, 746-762, DOI: https://doi. org/10.1016/j.engstruct.2018.09.041
32. Kefal, A., Tessler, A., Oterkus, E. (2017). An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Composite Structures, vol. 179, 514-540, DOI: https://doi.org/10.1016/j. compstruct.2017.07.078
33. Prabowo, A.R., Bae, D.M., Cho, J.H., Sohn, J.M. (2017). Analysis of structural crashworthiness and estimating safety limit accounting for ship collisions on strait territory. Latin American Journal of Solids and Structures, vol. 14, no. 8, 1594-1613, DOI: http://dx.doi.org/10.1590/1679-78253942
34. Vogel, D., Wehmeyer, M., Kebbach, M., Heyer, H., Bader, R. (2021). Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, vol. 113, 104115, DOI: https://doi.org/10.1016/j. jmbbm.2020.104115