Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

EFFECTS OF GEOMETRY AND MATERIAL FACTORS ON THE BEHAVIOR OF STIFFENED OFFSHORE PIPE STRUCTURES UNDER HYDROSTATIC PRESSURE


DOI: 10.5937/jaes0-38728 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 1016 pages: 1103-1121

Ilham Widiyanto
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Aditya Rio Prabowo*
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Teguh Muttaqie
Research Center for Hydrodynamics Tech., National Research and Innovation Agency (BRIN), Surabaya 60112, Indonesia

Nurul Muhayat
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Indri Yaningsih*
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Dominicus Danardono Dwi Pria Tjahjana
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Wibawa Endra Juwana
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Takahiko Miyazaki
Thermal Energy Conversion System Laboratory, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan

The world's oil and gas sectors are diverse. They utilize offshore pipes to generate millions of barrels of oil and gas to meet global energy demands. In this study we identified the critical buckling load that occurred on a cylinder shell (also known as radial buckling). Offshore pipe design must meet several criteria, one of which is the requirement for pipes to withstand the external hydrostatic pressure of seawater. The overall buckling load is calculated using the axial compression loading and the pressure on the entire surface of the cylinder shell (radial compression). The finite element analysis (FEA) method is used in our simulation. FEA is run using ABAQUS/CAE software with the Riks algorithm. Different types of cylinder shells are used in the simulation: unstiffened, stringer-stiffened, and ring-stiffened. The cylinder shell is loaded based on the depth of the installation. The material composition of the shell is varied with API 5L X65, copper-nickel alloy, and HY100 steel. The diameter sizes used are 28" (711.2 mm), 30" (762 mm), and 32" (812.8 mm). The simulation results show a critical buckling load for each variation. The critical buckling load is determined by the Young's modulus, geometric length, and moment of inertia. Based on the critical buckling loads generated, we also identify which cylinder shell composition is the strongest.

View article

This research was funded by Universitas Sebelas Maret under funding scheme Kolaborasi Internasional (KI-UNS) with contract/grant number 254/UN27.22/PT.01.03/2022. The grant is gratefully acknowledged by authors.

1.      SKK Migas, 2020 Annual Report: Towards 1 Million BOPD & 12 BSCFD in 2030, SKK Migas. (2020).

2.      PwC, Oil and Gas in Indonesia. Taxation Guide, (2019).

3.      J. Liu, B. Yu, Y. Zhou, Y. Zhang, M. Duan, The buckling of spherical-cylindrical composite shells by external pressure, Compos. Struct. 265 (2021). https://doi.org/10.1016/j.compstruct.2021.113773.

4.      B. Wang, M. Yang, D. Zhang, D. Liu, S. Feng, P. Hao, Alternative approach for imperfection-tolerant design optimization of stiffened cylindrical shells via energy barrier method, Thin-Walled Struct. 172 (2022) 108838. https://doi.org/10.1016/j.tws.2021.108838.

5.      H.S. Shen, Postbuckling behavior of plates and shells, 2017. https://doi.org/10.1142/10208.

6.      I. Guha, D.J. White, M.F. Randolph, Parametric solution of lateral buckling of submarine pipelines, Appl. Ocean Res. 98 (2020) 102077. https://doi.org/10.1016/j.apor.2020.102077.

7.      Z. Zhang, J. Yu, H. Liu, Z. Chen, Experimental and finite element study on lateral global buckling of pipe-in-pipe structure by active control method, Appl. Ocean Res. 92 (2019) 101917. https://doi.org/10.1016/j.apor.2019.101917.

8.      H.N.R. Wagner, C. Hühne, M. Janssen, Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors, Thin-Walled Struct. 151 (2020) 106764. https://doi.org/10.1016/j.tws.2020.106764.

9.      R.J. Boulbes, Troubleshooting Finite-Element Modeling with Abaqus: With Application in Structural Engineering Analysis, 2020. https://doi.org/https://doi.org/10.1007/978-3-030-26740-7_2.

10.   T. Muttaqie, D.Q. Thang, A.R. Prabowo, S.R. Cho, J.M. Sohn, Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure, Struct. Eng. Mech. 70 (2019) 431–443. https://doi.org/10.12989/sem.2019.70.4.431.

11.   H.M. Lee, G.H. Yoon, Size optimization method for controlling the buckling mode shape and critical buckling temperature of composite structures, Compos. Struct. 255 (2021) 112902. https://doi.org/10.1016/j.compstruct.2020.112902.

12.   K. Liang, P. Hao, B. Wang, Q. Sun, A novel reduced-order modeling method for nonlinear buckling analysis and optimization of geometrically imperfect cylinders, Int. J. Numer. Methods Eng. 122 (2021) 1456–1475. https://doi.org/10.1002/nme.6585.

13.   R. Wei, K. Shen, G. Pan, Optimal design of trapezoid stiffeners of composite cylindrical shells subjected to hydrostatic pressure, Thin-Walled Struct. 166 (2021) 108002. https://doi.org/10.1016/j.tws.2021.108002.

14.   M.C. De Oliveira, R.M. Figueredo, H.A. Acciari, E.N. Codaro, Corrosion behavior of API 5L X65 steel subject to plastic deformation, J. Mater. Res. Technol. 7 (2018) 314–318. https://doi.org/10.1016/j.jmrt.2018.02.006.

15.   Z. Gao, B. Gong, Q. Xu, D. Wang, C. Deng, Y. Yu, High cycle fatigue behaviors of API X65 pipeline steel welded joints in air and H2S solution environment, Int. J. Hydrogen Energy. 46 (2021) 10423–10437. https://doi.org/10.1016/j.ijhydene.2020.12.140.

16.   D.T. Buzzatti, L.F. Kanan, G. Dalpiaz, A. Scheid, C.E. Fortis Kwietniewski, Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel, Mater. Sci. Eng. A. 833 (2022) 142588. https://doi.org/10.1016/j.msea.2021.142588.

17.   V.S. Liduino, M.T.S. Lutterbach, E.F.C. Sérvulo, Corrosion behavior of carbon steel API 5L X65 exposed to seawater, Int. J. Eng. Tech. Res. 7 (2017) 70–74.

18.   Z. Tan, T. Ma, L. Zhang, W. Zhang, R. Jia, D. Cao, H. Ji, Relationship between corrosion resistance and microstructure of copper-nickel alloy pipes in marine engineering, Mater. Sci. Forum. 944 MSF (2018) 389–397. https://doi.org/10.4028/www.scientific.net/MSF.944.389.

19.   T. Yonezawa, Nickel-Based Alloys, 2020. https://doi.org/10.1016/B978-0-12-803581-8.00676-7.

20.   M. Imran, D. Shi, L. Tong, H.M. Waqas, Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis, Ocean Eng. 190 (2019) 106443. https://doi.org/10.1016/j.oceaneng.2019.106443.

21.   J.J.S. Dilip, G.D.J. Ram, T.L. Starr, B. Stucker, Selective laser melting of HY100 steel: Process parameters, microstructure and mechanical properties, Addit. Manuf. 13 (2017) 49–60. https://doi.org/10.1016/j.addma.2016.11.003.

22.   M. Zaczynska, H. Abramovich, C. Bisagni, Parametric studies on the dynamic buckling phenomenon of a composite cylindrical shell under impulsive axial compression, J. Sound Vib. 482 (2020) 115462. https://doi.org/10.1016/j.jsv.2020.115462.

23.   P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, H. Miao, Thin-Walled Structures Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads , Part 1 : Experimental study, 166 (2021). https://doi.org/10.1016/j.tws.2021.108118.

24.   P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, H. Miao, Thin-Walled Structures Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads , Part 2 : Numerical study, 169 (2021). https://doi.org/10.1016/j.tws.2021.108330.

25.   F.C. Wang, W. Li, L.H. Han, Interaction behavior between outer pipe and liner within offshore lined pipeline under axial compression, Ocean Eng. 175 (2019) 103–112. https://doi.org/10.1016/j.oceaneng.2019.02.025.

26.   X. Zhang, Z. Li, P. Wang, G. Pan, Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure, Ocean Eng. 249 (2022) 110871. https://doi.org/10.1016/j.oceaneng.2022.110871.

27.   S. Zhu, J. Sun, Z. Tong, Q. Li, Z. Zhou, X. Xu, Post-buckling analysis of magneto-electro-elastic composite cylindrical shells subjected to multi-field coupled loadings, Compos. Struct. 270 (2021) 114061. https://doi.org/10.1016/j.compstruct.2021.114061.

28.   W.M. Mahdy, L. Zhao, F. Liu, R. Pian, H. Wang, J. Zhang, Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads, Compos. Struct. 255 (2021) 112977. https://doi.org/10.1016/j.compstruct.2020.112977.

29.   Y. Zhu, Y. Dai, Q. Ma, W. Tang, Buckling of externally pressurized cylindrical shell: A comparison of theoretical and experimental data, Thin-Walled Struct. 129 (2018) 309–316. https://doi.org/10.1016/j.tws.2018.04.016.

30.   M. Zhang, Y. Yao, H. Pei, J. Zheng, A new isotropic hardening constitutive model based on reference compression curve, Comput. Geotech. 138 (2021) 104337. https://doi.org/10.1016/j.compgeo.2021.104337.

31.   A.R. Prabowo, B. Cao, J.M. Sohn, D.M. Bae, Crashworthiness assessment of thin-walled double bottom tanker: Influences of seabed to structural damage and damage-energy formulae for grounding damage calculations, J. Ocean Eng. Sci. 5 (2020) 387–400. https://doi.org/10.1016/j.joes.2020.03.002.

32.   A.R. Prabowo, R. Ridwan, N. Muhayat, T. Putranto, J.M. Sohn, Tensile analysis and assessment of carbon and alloy steels using fe approach as an idealization of material fractures under collision and grounding, Curved Layer. Struct. 7 (2020) 188–198. https://doi.org/10.1515/cls-2020-0016.

33.   M. Yusvika, A.R. Prabowo, D.D.D.P. Tjahjana, J.M. Sohn, Cavitation prediction of ship propeller based on temperature and fluid properties of water, J. Mar. Sci. Eng. 8 (2020). https://doi.org/10.3390/JMSE8060465.

34.   A.R. Prabowo, T. Muttaqie, J.M. Sohn, B.I.R. Harsritanto, Investigation on structural component behaviours of double bottom arrangement under grounding accidents, Theor. Appl. Mech. Lett. 9 (2019) 50–59. https://doi.org/10.1016/j.taml.2019.01.010.

35.   B.P.P. Caesar, H. Hazimi, H. Sukanto, A.R. Prabowo, Development of novel design and frame structural assessment on mitutoyo’s auto checking hardness machine using reverse engineering approach: Series HR-522 hardness tester, J. Eng. Sci. Technol. 15 (2020) 1296–1318.

36.   Cao, B., Bae, D.-M., Sohn, J.-M., Prabowo, A.R., Chen, T.H., & Li, H. (2016). Numerical analysis for damage characteristics caused by ice collision on side structure. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 8, V008T07A019. https://doi.org/10.1115/OMAE2016-54727.

37.   A.R. Prabowo, J.H. Byeon, H.J. Cho, J.M. Sohn, D.M. Bae, J.H. Cho, Impact phenomena assessment: Part I-Structural performance of a tanker subjected to ship grounding at the Arctic, MATEC Web Conf. 159 (2018). https://doi.org/10.1051/matecconf/201815902061.

38.   A.R. Prabowo, Q.T. Do, B. Cao, D.M. Bae, Land and marine-based structures subjected to explosion loading: A review on critical transportation and infrastructure, Procedia Struct. Integr. 27 (2020) 77–84. https://doi.org/10.1016/j.prostr.2020.07.011.

39.   D. Mahesa Prabowoputra, S. Hadi, J.M. Sohn, A.R. Prabowo, The effect of multi-stage modification on the performance of Savonius water turbines under the horizontal axis condition, Open Eng. 10 (2020) 793–803. https://doi.org/10.1515/eng-2020-0085.

40.   A.R. Prabowo, T. Tuswan, R. Ridwan, Advanced development of sensors’ roles in maritimebased industry and research: From field monitoring to highrisk phenomenon measurement, Appl. Sci. 11 (2021). https://doi.org/10.3390/app11093954.