Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

PRINCIPLES OF DESIGNING WELL SEPARATORS


DOI: 10.5937/jaes16-17327
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 16 article 524 pages: 242 - 245

A.B. Feodorov
Siberian Federal University, Krasnoyarsk, Russia

V.I. Afanasov
Siberian Federal University, Krasnoyarsk, Russia

V.N. Gaevsky
Siberian Federal University, Krasnoyarsk, Russia

S.P. Dunaeva
Siberian Federal University, Krasnoyarsk, Russia

R.S. Miroshnikov
Siberian Federal University, Krasnoyarsk, Russia

P.M. Kondrashov
Siberian Federal University, Krasnoyarsk, Russia

Vortex motion is effectively used in the development of wellbore filter designs. Further development of the principles of such design requires the development of some principles based on experimental observations and computer modeling. A constructive analogy between the wellbore filter and the Ranque vortex tube is shown. The results of experimental and theoretical studies of the vortex tube are applied as a basis for designing a well separator. Recommendations are formulated regarding the radius of the inner branch pipe of the downhole filter placed in the body. Approaches are discussed when choosing the length of the working section of the well separator, as well as the choice of the shape of the input cochlear, the size of the outlet diaphragm, and the shape of the sand suspension window.

View article

The research was supported by the Federal Target Program “Research and development on the priority directions of development of the scientific technological complex of Russia for 2014-2020”. Action 1.3 “Carrying out the applied research directed towards the creation of advanced scientific- technological potential for the development of branches of economy” (unique identifier of applied researches (project) RFMEFI57817X0236).

1. Sh.A.Piralishvili, V.M.Polyaev, М.N.Sergeev, The vortex tube. Research, theory, concepts (Moscow: Energomash UNPC, 2000).

2. C.U.Lindestrom-Lang, An experimental study of the tangentional velocity profi le on Ranque-Hilsh vortex tube, Riso Report, n 116. pp. 2-43, 1965.

3. J.C.Crittenden, R.R.Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous MWH's Water Treatment: Principles and Design: Third Edition (2012) available at: https://onlinelibrary.wiley.com/doi/ book/10.1002/9781118131473.

4. G.Z.Broun, A.Roshko On density effect and large structure in turbulent mixing lauers, I. Fluid Mech, vol. 64, pp. 778-816, 1974.

5. M. Kurosaka, Acoustik streminq in swirlinq fl ow and Ranque - Hilsh (Vortex tube) effect, I. Fluid Sci., vol.124, pp. 139-172, 1993.

6. K.Stephan, Investigation in a Vortex tube /K.Stephan [e.a.], Ibid, vol. 26, n. 3, pp. 341-348, 1983.

7. P.K.Singh, An experimental performance evaluation of vortex tube. I.E.(i) J.-MC.-January, vol.84, pp.149- 153, 2004.

8. W.R.Michałek, J.G.M.Kuerten, J.C.H.Zeegers, R.Liew LES of the ranque-hilsch vortex tube, ERCOFTAC Series 20, pp. 679-686, 2015.

9. K.V.Lebedinskii, N.E.Kurnosov, A.A.Nikolotov, D.P.Alekseev Ionization of air in a ranque-hilsch vortex tube and the method of obtaining uni- and bipolarionization, Journal of Engineering Physics and Thermophysics, vol. 88(6), pp. 1476-1482, 2015.

10. Y.Xue, M.Arjomandi, R.Kelso Experimental study of the flow structure in a counter flow Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, vol. 55 (21-22), pp. 5853-5860, 2012.

11. V.Alekhin, V.Bianco, A.Khait, A.Noskov Numerical investigation of a double-circuit Ranque-Hilsch vortex tube, International Journal of Thermal Sciences, vol. 89, pp. 272-282, 2015.

12. S.E.Rafi ee, M.B.M.Sadeghiazad Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque-Hilsch vortex tube, Aviation, vol. 20(1), pp. 21-31, 2016. Journal of Applied Engineering Science Vol. 16, No. 2, 2018 ISSN 1451-4117 245

13. Y.Xue, M.Arjomandi, R.Kelso Experimental study of the thermal separation in a vortex tube, Experimental Thermal and Fluid Science, n. 46, pp. 175-182, 2013.

14. A.B.Feodorov, V.I.Afanasov, R.S.Miroshnikov, V.V. Bogachev Сoncept of modernization of input device of oil and gas separator, IPDME 2017 IOP Publishing IOP Conf. Serios: Eafth and Environmental Science, vol. 87, n. 082020, 2017.

15. V.I.Afanasov, V.V.Abramov, R.S.Miroshnikov, V.N. Gaevsky, S.P.Dunaeva Vortex tube in well separators // IOP Conference Series: Materials Science and Engineering, vol. 327(2), n. 022071, 2017.

16. V.V.Abramov, V.I.Afanasov, A.S.Lunev, A.M.Shakhmin, A.M.Fayziev, Patent RF 156936. Well Sand Separator. 2015

17. O.V.Kazantseva, Sh.A.Piralishvili, A.A.Fuzeeva Numerical simulation of swirling fl ows in vortex tubes, High Temperature, vol. 43(4), pp. 608-613, 2005.

18. M.Bovand, M.S.Valipour, S.Eiamsa-Ard, A. Tamayol Numerical analysis for curved vortex tube optimization, International Communications in Heat and Mass Transfer, vol. 50, pp. 98-107, 2014.

19. W.Frohlingsdorf, H.Under, Numerical investigation of the compressible fl ow and the energy separation in the Ranque – Hilsch vortex tube, Int. J. Heat and Mass Transfer, n 42, pp. 415-422, 1999.

20. F.Shults-Grunow, Die Wirkungweise des Ranque – wirbelrohres, Kaltetechnik, n. 2, pp. 273-284, 1950.

21. А.P.Merkulov, The vortex tube and its usage in technic. (Moscow: Mashnostroenie, pp. 8-16, 1969).

22. A.F.Gutsol, The Rank effect, Successes in Physical Sciences, vol. 167, n.6, pp. 665-687, 1997.

23. M.G.Ranque, Experiences sur la detente giratoireavec production simulanees d’un echappementd’airchaud et d’airfroid, Journal de Physique et le Radium (in French), Supplement, vol. 7, n. 4, pp. 112–114, 1933.

24. M.Sibulkin, Unsteady, Viscous, Circular Flow. Part 3: Application to the Ranque-Hilsch Vortex Tube, Journal of Fluid Mechanics, n. 12, pp.269-293, 1962.

25. K.Stephan, S.Lin, M.Durst, F.Huang, and D.Seher, A Similarity Relation for Energy Separation in a Vortex Tube, Int. J. Heat Mass Transfer, vol. 27, n. 6, 911–920, 1984.

26. Presentation of the LAKOS downhole fi lter: available at: https://www.youtube.com/watch?v=GWMFgiWSfE0

27. M.S.Iliessu, G.D.Ciosan, F.A.Avellan Analysis of the cavitating draft tube vortex in a Francis turbine using particle velocimetry measurements in two-phase flow, J. of Fluids Engineering, vol. 130, p.10, 2008.

28. R.I.Edling, B.I.Barfaield, C.I.Haan Vortex velocity production with emphasis directed toward vortex tube sediment trapdesign, Pap ASAE for Anny. Meet, n.11, Pap. 75- 2548, p. 25, 1975.
29. U.Vabistas Georgios, Tangentional velocity and static pressure distributions in vortex chambers, AIAA, vol. 25(1), n.8, pp. 174-286, 1987