Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

ROBUST CLASSIFICATION OF TEXTURE LANDFOREST INVENTORY BASED ON MODEL OF MINIMALLY SUFFICIENT FEATURES


DOI: 10.5937/jaes15-14060
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 15 article 436 pages: 236 - 241

Yury Ipatov
Volga State University of Technology, Yoshkar-Ola, Russia

Alexandr Krevetsky
Volga State University of Technology, Yoshkar-Ola, Russia

Yury Andrianov
Volga State University of Technology, Yoshkar-Ola, Russia

Boris Sokolov
Saint Petersburg Institute of Informatics and Automation, Russian Academy of Sciences (SPIIRAS), Saint Petersburg, Russia

Method for automated classification of ground forest inventory images based on the proposed mathematical model developed. The general model is represented by the statistical characteristics of images and fractal dimension of texture. Experimental means were determined minimally sufficient characteristics to solve the problem of robust classification. Neural network based on unsupervised self-organizing maps used as a classifier. Figures obtained discounts of the proposed approach on real digital images.

View article

John A. Richards, XiupingJia Remote Sensing Digital Image Analysis. – Berlin: Springer, 2006. – 454 p.

Schowengerdt RA. Remote Sensing – Models and Methods for Image Processing. 2nd ed. London, San Diego: Academic Press; 1997. ISBN: 0-12-628981-6.

Ipatov Y.A., Krevetsky A.V. Algoritm lokalizatsii granits teksturnykh uchastkov drevesiny na ikh tsifrovykh izobrazheniyakh // Izv. vuzov. Priborostroyeniye. 2009. Volumе. 52, № 7. – pp. 12-17.

Ipatov Y.A., Krevetsky A.V. Segmentatsiya tsvetnykh aerofotosnimkov na osnove algoritma selektivnogo obucheniya// Vestnik MarGTU. Radiotekhnicheskiye i infokommunika- tsionnyye sistemy. – Yoshkar-Ola: Mar- GTU– №.2, 2008. – pp.22-26.

Krevetsky A.V., Ipatov Y.A. Kompleksirovannoye optiko-lokatsionnoye obnaruzheniye i otsenka parametrov obyektov nazemnoy lesnoy taksatsii// Uspekhi sovremennoy radioelektroniki. Radiotekhnika. – 2011. №5. – p. 56-60.

Ipatov Y.A. Process automation of an estimation for relative density of wood plantings the instrumentality of methods of digital image processing // 8-th International Conference ≪PRIA: New Information Technologies≫: Conference Proceedings. Vol. 1. – Yoshkar- Ola, 2007. – P.307-309.

Krevetsky A.V., Ipatov Y.A. High Technologies in Measuring Problems of Forestry Complex on The Basis of Scene Analysis and Image Recognition Method// 8-th International Conference ≪PRIA: New Information Technologies ≫: Conference Proceedings. Vol. 2. – Yoshkar-Ola, 2007. – P.287-289.

Novyye teksturnyye kharakteristiki i ikh ispol’zovaniye v klassifikatsii tekstur, invariantnykh k izmeneniyu ugla povorota, DzhiangoZhang, TiyenuTan, 2001 [Elektronnyy resurs]. – Rezhim dostupa: http://lear.inrialpes. fr/people/zhang/ECCV_paper.pdf

Logarifmicheski-polyarnyye veyvlet-signatury dlya klassifikatsii tekstur, invariantnykh k vrashcheniyu i masshtabu, Chi-Men Pan, Mun-Chuyen Li, IEEE Transactionson Pattern Analysisand Machine Intelligence, vol. 25, no. 5, May 2003.

R.M.Haralick, K.Shanmugam, I.Dinstein, Textural features for image classification // IEEE Trans.Syst.ManCybern. v.3, pp.610- 621, 1973.

N.Y. Ilyasova, A.V. Kupriyanov, A.G. Khramov, Klassifikatsiya kristallogramm s ispol’zovaniyem metodov statisticheskogo analiza teksturnykh izobrazheniy // Komp’yuternaya optika, vyp. 20, pp. 122-127, 2000

Tkhi Tkhu Chang Buy, Ngok Khoang Fan, V. G. Spitsyn Klassifikatsiya izobrazheniy na osnove primeneniya tsvetovoy informatsii, veyvlet-preobrazovaniya khaara i mnogosloynoy neyronnoy seti // Problemy informatiki. – 2011. № 5. pp. 81-86.

A.V. Kuznetsov Klassifikatsiya izobrazheniy s ispol’zovaniyem yader na strukturirovanny kh dannykh //Sb. nauchnykh trudov NGTU.– 2011. –№3(65) pp.55-60.

Potapov A. A., Pakhomov A. A., Nikitin S. A., Gulyayev YU. V., Noveyshiye metody obrabotki izobrazheniy. – M.: Fizmatlit, 2008.– 496 p.

Khaykin S. Neyronnyye seti: polnyy kurs, 2- ye. – M.: ≪Vilyams≫, 2006. – p. 1104.

TeuvoKohonen, “Self-Organizing Maps”, Springer-Verlag, Heidelberg, 1995.

Korn G., Korn T. Handbook of Mathematics for Scientists and Engineers. M.: Nauka, 1984. - 832p.