DOI: 10.5937/jaes15-14060
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.
Volume 15 article 436 pages: 236 - 241
Method for automated classification of ground forest inventory images based on the proposed mathematical model developed. The general model is represented by the statistical characteristics of images and fractal dimension of texture. Experimental means were determined minimally sufficient characteristics to solve the problem of robust classification. Neural network based on unsupervised self-organizing maps used as a classifier. Figures obtained discounts of the proposed approach on real digital images.
John A. Richards, XiupingJia
Remote Sensing Digital Image Analysis. – Berlin: Springer, 2006. – 454 p.
Schowengerdt RA. Remote Sensing –
Models and Methods for Image Processing. 2nd ed. London, San Diego: Academic
Press; 1997. ISBN: 0-12-628981-6.
Ipatov Y.A., Krevetsky A.V.
Algoritm lokalizatsii granits teksturnykh uchastkov drevesiny na ikh tsifrovykh
izobrazheniyakh // Izv. vuzov. Priborostroyeniye. 2009. Volumе. 52, № 7. – pp.
12-17.
Ipatov Y.A., Krevetsky A.V.
Segmentatsiya tsvetnykh aerofotosnimkov na osnove algoritma selektivnogo
obucheniya// Vestnik MarGTU. Radiotekhnicheskiye i infokommunika- tsionnyye
sistemy. – Yoshkar-Ola: Mar- GTU– №.2, 2008. – pp.22-26.
Krevetsky A.V., Ipatov Y.A.
Kompleksirovannoye optiko-lokatsionnoye obnaruzheniye i otsenka parametrov
obyektov nazemnoy lesnoy taksatsii// Uspekhi sovremennoy radioelektroniki.
Radiotekhnika. – 2011. №5. – p. 56-60.
Ipatov Y.A. Process automation of
an estimation for relative density of wood plantings the instrumentality of
methods of digital image processing // 8-th International Conference ≪PRIA: New
Information Technologies≫: Conference Proceedings. Vol. 1. – Yoshkar- Ola,
2007. – P.307-309.
Krevetsky A.V., Ipatov Y.A. High
Technologies in Measuring Problems of Forestry Complex on The Basis of Scene
Analysis and Image Recognition Method// 8-th International Conference ≪PRIA:
New Information Technologies ≫: Conference Proceedings. Vol. 2. –
Yoshkar-Ola, 2007. – P.287-289.
Novyye teksturnyye
kharakteristiki i ikh ispol’zovaniye v klassifikatsii tekstur,
invariantnykh k izmeneniyu ugla povorota, DzhiangoZhang, TiyenuTan, 2001
[Elektronnyy resurs]. – Rezhim dostupa: http://lear.inrialpes.
fr/people/zhang/ECCV_paper.pdf
Logarifmicheski-polyarnyye
veyvlet-signatury dlya klassifikatsii tekstur, invariantnykh k vrashcheniyu i
masshtabu, Chi-Men Pan, Mun-Chuyen Li, IEEE Transactionson Pattern Analysisand
Machine Intelligence, vol. 25, no. 5, May 2003.
R.M.Haralick, K.Shanmugam,
I.Dinstein, Textural features for image classification // IEEE
Trans.Syst.ManCybern. v.3, pp.610- 621, 1973.
N.Y. Ilyasova, A.V. Kupriyanov,
A.G. Khramov, Klassifikatsiya kristallogramm s ispol’zovaniyem metodov
statisticheskogo analiza teksturnykh izobrazheniy // Komp’yuternaya optika,
vyp. 20, pp. 122-127, 2000
Tkhi Tkhu Chang Buy, Ngok Khoang
Fan, V. G. Spitsyn Klassifikatsiya izobrazheniy na osnove primeneniya tsvetovoy
informatsii, veyvlet-preobrazovaniya khaara i mnogosloynoy neyronnoy seti //
Problemy informatiki. – 2011. № 5. pp. 81-86.
A.V. Kuznetsov Klassifikatsiya
izobrazheniy s ispol’zovaniyem yader na strukturirovanny kh dannykh //Sb.
nauchnykh trudov NGTU.– 2011. –№3(65) pp.55-60.
Potapov A. A., Pakhomov A. A.,
Nikitin S. A., Gulyayev YU. V., Noveyshiye metody obrabotki izobrazheniy. – M.:
Fizmatlit, 2008.– 496 p.
Khaykin S. Neyronnyye seti:
polnyy kurs, 2- ye. – M.: ≪Vilyams≫, 2006. – p. 1104.
TeuvoKohonen, “Self-Organizing
Maps”, Springer-Verlag, Heidelberg, 1995.
Korn G., Korn T. Handbook of Mathematics for
Scientists and Engineers. M.: Nauka, 1984. - 832p.