DOI: 10.5937/jaes15-14603
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.
Volume 15 article 450 pages: 332 - 338
The article describes the stability analysis of elastic orthotropic rectangular plates with combined boundary conditions (combination of simple supporting and clamping along the sides). The external load compresses a plate along all over the contour. Authors propose to apply the form factor interpolation method (FFIM) to calculate the critical load of buckling. The FFIM is based on the functional relationship between integral geometric parameter of the midplane such as the form factor and the critical force of the buckling. It was obtained the approximate analytical expressions for the critical force of orthotropic rectangular plates. The form factor and the flexural stiffness ratios are parameters of these approximate expressions. The calculation results are compared with the FEM solutions obtained in the program SCAD Office and demonstrate good accuracy. The proposed approach can be extended to other forms of plates, boundary condition combinations, as well as the types of loading.
Timoshenko S.P., (1971).
Ustojchivost’ sterzhnej, plastin i obolochek [Stability of rods, plates
and shells]. Moscow: Nauka Publ.
Vol’mir A.S., (1971).
Ustojchivost’ deformiruemyhsistem [Stability of deformable
systems]. Moscow: Nauka Publ..
Dmitrienko Yu.I., (2015). Teoriya
ustoychivosti plastin, osnovannaya na asimptoticheskom analize uravneniy
teorii ustoychivosti trekhmernykh uprugikh sred [Stability theory of plates,
based on the asymptotic analysis of the equations of the theory of stability of
three-dimensional elastic medium]. Nauka i innovacii, 9(45), 1-26.
Belous A.A. & Belous V.A.,
(1977). Ustojchivost’ prjamougol’nyh plastin za predelom uprugosti s uchetom
szhimaemosti materiala [Stability of rectangular plates beyond the elastic limit,
taking into account the compressibility of the material]. Uchenye zapiski CAGI,
6(8), 107-118.
Annenkov L.V., (2015).
Issledovanie ustojchivosti zashhemlennoj prjamougol’noj plastiny, szhatoj v
odnom napravlenii [Stability analysis of rectangular plate, clamped along the
contour and compressed in on direction]. Vestnik Gosudarstvennogo universiteta
morskogo i rechnogo flota im. Admirala S.O., 3, 48-53.
Lopatin A.V. & Avakumov R.V.,
Ustojchivost’ ortotropnoj plastiny s dvumja svobodnymikrajami, nagruzhennoj
izgibajushhim momentom v ploskosti [Stability of an orthotropic plate with two
Svobodnaya loaded by bending moment in the plane]. U: Reshetnevskie chtenija,
2009, Krasnoyarsk. 35-36.
Ropalin Siahaan, Poologanathan
Keerthan & Mahen Mahendran, (2016). Finite element modeling of rivet
fastened rectangular hollow flange channel beams subject to local buckling.
Engineering Structures, 126, 311-327. doi:10.1016/j.engstruct.2016.07.004
Wael F. Ragheb, (2016).
Estimating the local buckling capacity of structural steel
I-section columns at elevated temperatures. Thin- Walled Structures, 107,
18-27. doi:10.1016/ j.tws.2016.05.016
Angus C.C. Lam, Yanyang Zhang, Yi
Qin, Michael C.H. Yam & V.P. Iu, (2016). Design for inelastic local
web buckling of coped beams. Journal of Constructional Steel Research, 125,
173-189. doi:10.1016/ j.jcsr.2016.06.016
Korobko A.V., (1999).
Geometricheskoe modelirovanie formy oblasti v dvumernyh zadachah teorii
uprugosti [Geometric modeling of area shape in two-dimensional problems of the
elasticity theory]. Moscow: ASV Publ..
Korobko V.I., Korobko A.V.,
Chernyaev A.A. & Savin S.Yu., (2015). Determination of
maximum deflection at cross bending parallelogram plates using conformal
radius ratio interpolation technique. Journal of the Serbian Society for
Computational Mechanics, 9(2), 36-45. doi:10.5937/jsscm1501036K
Korobko V.I., Korobko A.V., Savin
S.Yu. & Chernyaev A.A., (2016). Solving the transverse bending problem
of thin elastic orthotropic plates with form factor interpolation method.
Journal of the Serbian Society for Computational Mechanics, 2(10), 9-17.
doi:10.5937/jsscm1602009K
Korobko V.I. & Korobko A.V.,
(2010).Stroitel’naja mehanika plastinok: Tehniches-kaja teorija [Structural
mechanics of plates:Technical theory]. Moscow: Izdatel’skij dom“Spektr” Publ.