Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

INTERACTION OF VULCANIZATION FACTORS DURing CONTINUOUS RUBBER EXTRUSION


DOI: 10.5937/jaes15-12938
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 15 article 483 pages: 524 - 528

Nina Djapic
University of Novi Sad, Technical faculty “Mihajlo Pupin”, Zrenjanin, Serbia

Ivan Ikonov
Novkabel AD, Industrijska bb, Novi Sad, Serbia

Vitomir Antonic
Technical School “Kosta Abrasevic”, Sabac, Serbia

The objective of this study was to investigate the interaction factors during the technological process of rubber-insulated conductor’s production with continual extrusion process. Rubber used for the insulation was ethylene-propylene copolymer. The reticulation inducers were different peroxides. The technological process consisted of conductor’s coating with elastomer, through the continual vulcanization tube under steam pressure. The changes of vulcanization process variables: pressure and speed (vulcanization time) influence the elastomer’s mechanical properties, its tensile strength. The multiple and partial correlation study was used to estimate the effects of steam pressure and vulcanization time, during the continual vulcanization, on the rubber’s insulation tensile strength. The experiment was carried out during the extrusion of the conductor for the specific product type (H05RN-F 2.5 mm2). It was concluded, by the results obtained, that for keeping the vulcanization quality at high level, required is to keep pressure constant and to change the vulcanization time during the extrusion process. Numerical results obtained showed that the choice of speed (vulcanization time) increases the elastomer’s tensile strength, when the pressure is kept at constant level.

View article

Baldwin, F. P., ver Strate, G., (1972) Polyolefin elastomers of ethylene and propylene, Rubber Chem. Technol., 45, 709 – 881. DIN VDE0282-1: Starkstromleitungen mit vernetzter Isolierhuelle fuer Nennspannungen bis 450/750V-Teil 1: allgemeine Anforderungen; Deutsche Fassung HD 22.1 S4: 2002 (2003-09).

Gent, A. N. (1978) Science and Technology of Rubber, New York: Academic Press.

Hadživuković, S. (1991) Statistički metod, Novi Sad: Poljoprivredni fakultet.

Kosar, V., Gomzi, Z., (2007). Modeling of the power cable production line, Thermochimica Acta, 457, 70 – 82.

ISO 1421: Rubber- or plastics-coated fabrics — Determination of tensile strength and elongation at break (1998).

Lenir, V. L. (1984) Computerization of wire insulating lines. An industrial approach, Polym.Eng.Sci., 24 (9), 633 – 644.

Malić, D. (1963) Termodinamika, termotehnika, Beograd: Građevinska knjiga.

Mandić, J. (1992) Otpornost materijala, Beograd: Naučna knjiga.

Milani, G., Milani, F. (2008). Genetic algorithm for the optimization of rubber insulated high voltage power cables production lines, Computers and Chemical Engineering, 32, 3198 – 3212.

Pantelić I. (1976) Uvod u teoriju inženjerskog eksperimenta, Novi Sad: Radnički Univerzitet „Radivoj Ćirpanov”.

Рябинин, Д. Д., Лукач, Ю.Е (1965) Червячные машины для переработки пластических масс, Москва: Машиностроение.

Roberts, B.E., Verne, S. (1984) Industrial applications of different methods of cross-linking polyethylene, Plast. Rubber Process Appl., 4 (2), 135 – 139.

Schwarr, R. H., Chien, C. H. (1981) Ethylene-propylene co and ter polymer rubber, Report 4b, Menlo Park, CA: Stanford Research Institute.

Seymour, V., Gomzi, Z. (2007) Modeling of the power cable production line, Thermochim Acta, 457, 70 – 82.

Tabak, V. (1990) Linija za kontinualnu vulkanizaciju, Deveti dani Društva plastičara i gumaraca, Zagreb. 17. Tehnička dokumentacija: Organizacija i način rada ulazne kontrole gumarskih materijala, Novi Sad: Fabrika „Novkabel”.

Vukadinović, S. (1978) Elementi teorije verovatnoće i matematičke statistike, Beograd: Privredni pregled.