DOI: 10.5937/jaes16-17083
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.
Volume 16 article 531 pages: 281 - 291
The generalized problem of eigenvalue and vectors for singular matrix beams is central in the class of problems of rational construction of computed spectral models of complex modular systems. Solving this problem provides an opportunity to solve these problems, what determined the relevance of this work. The design calculations of complex modular-modular systems have a multivariate character for ensuring their optimal characteristics due to variation within the permissible limits of the elastic-inertial parameters. In the general case such calculations acquire the character of structural-parametric synthesis, when the varied space is supplemented by corrective dynamic devices. The purpose of this article was to provide basic methods for carrying out these calculations. The approach based on the singular decomposition of characteristic matrices was taken as the basis of the research in this paper. This allowed the authors to propose a set of methods for solving this problem, adaptively taking into account the specifi city of the available input data. The theoretical signifi cance of the work lies in the development of the modern mathematical and algorithmic apparatus of singular matrix beams, and practical in developing a scientifi c and methodological basis for solving a corresponding class of applied problems of the dynamics of mechanical and electromechanical systems, for equivalent mathematical and simulation modeling of systems of this class.
1. Kochura, A.,
Podkolzina, L., Ivakin, Ya., Nidziev, I. (2013). Singular matrix beams in the
generalized symmetric eigenvalue problem. SPIIRAS Proceedings,
vol. 26, no. 3, 253-276, DOI: http://dx.doi.org/10.15622/sp.26.18, from http://proceedings.spiiras.nw.ru/ojs/index.php/sp/article/view/1705, accessed on 2017-09-21.
2. Parlett, B.
(1998). Symmetric eigenvalue problem. Society for Industrial and Applied Mathematics,
Philadelphia, DOI: 10.1137/1.9781611971163
3. Yousef, S.
(2003). Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematic, Philadelphia, DOI: 10.1137/1.9780898718003. ch4, from http://inis.jinr.ru/sl/M_Mathematics/MN_Numerical%20methods/MNl_Numerical%20linear%
20algebra/Saad%20Iterative.pdf, accessed on 2017-09-20.
4. Kochura, A.,
Podkolzina, L., Ivakin, Ya., Nidziev, I. (2014). Development of algorithm of
the decision of systems linear equations with the varied parameters, using the
matrix sparseness. SPIIRAS Proceedings, no. 2(33), 79-98, DOI: 10.15622/ sp.33.5,
from https://readera.ru/razrabotka-algoritma- reshenija-sistem-linejnyh-uravnenij-svariruemymi-
142176937-en, accessed on 2017-08-09.
5. Alaghband, G.
(1999). Parallel sparse matrix solution and performance. Parallel Computing,
vol. 21, no. 9, 1407-1430, DOI: 10.1016/0167-8191(95)00029-N
6. Blatov, I.A.,
Kitaeva, Ye.V. (2010). Numerical methods for sparse matrices. Samara State University
Publ., Samara.
7. Borutzky, W.
(2009). Bond graph methodology: Development and analysis of multidisciplinary
dynamic system models. Springer, DOI: 10.1007/978-1-84882-882-7, from https://link.springer.com/content/
pdf/bfm%3A978-1-84882-882-7%2F1.pdf, accessed on 2017-08-22.
8. Dehnavi, M.M.,
Fernandez, D.M., Giannacopoulos, D. (2010). Finite-element sparse matrix vector
multiplication on graphic processing units. IEEE Transactions on Magnetics,
vol. 46, no. 8, 2982-2985, DOI:10.1109/TMAG.2010.2043511
9. Kron, G. (1972).
The study of complex systems in parts – diakoptics. Nauka, Moscow.
10. Pissanetski, S.
(1988). Sparse matrix technology. Mir, Moscow, from http://bookre.org/reader?-file=1035085,
accessed on 2017-07-05.
11. Sasaoka, T.,
Kawabata, H., Kitamura, T. (2007). A MATLAB-based code generator for parallel
sparse matrix computations utilizing PSBLAS. IEICE Transactions on Information and
Systems, vol. 90-D, no. 1, 2-12, DOI: 10.1093/ietisy/e90-1.1.2
12. Davis, T.A.
(2006). Direct methods for sparse linear systems. Society for Industrial and
Applied Mathematic, New York, DOI: 10.1111/j.1751- 5823.2007.00015_14.x
13. Davis, T.A., Hu,
Y. (2011). The university of Florida sparse matrix collection. ACM Transactions
on Mathematical Software, vol. 38, no. 1, 1-28, DOI:10.1145/2049662.2049663,
from http://yifanhu.net/PUB/matrices.pdf, accessed on 2017-08-25.
14. Tran, T.M.,
Gruber, R., Appert, K., Wuthrich, S. (1996). A direct parallel sparse matrix
solver. Computer Physics Communications, vol. 96, no. 2-3, 118-128, DOI:
10.1016/0010 4655(96)00007-0
15. Manakova, N.A.,
Vasiuchkova, K.V. (2017). Numerical investigation for the start control and final
observation problem in model of an i-beam deformation. Journal of Computational
and Engineering Mathematics. vol. 4, no. 2. 26-40, DOI: 10.14529/ jcem170203.
MSC 35Q99
16. Al-Isawi, J.K.T.
(2015). On some properties of solutions to dzektser mathematical model in
quasi-sobolev spaces. Journal of Computational and Engineering Mathematics.
vol. 2, no. 4. 27-36. DOI:10.14529/jcem150403. MSC 46A16, 47D03, 34D09
17. Ivakin, Ya.,
Potapychev, S.N., Ivakin, V. (2018). Verification of the hypotheses of a
research on the basis of geochronological tracking. Historical Informatics.
vol.1. 86-93 DOI: 10.7256/2585-7797.2018.1.25344. URL:
http://e-notabene.ru/istinf/article_25344.html
18. Uteshev, A.U.,
Borovoj I.I. (2016) The solution of a problem of rational interpolation with use
of gankelevy polynoms. Vestnik of Saint Petersburg University. Ser. 10, Applied
Mathematics. Computer Science. Control Processes. vol. 4, 31-43 DOI: 10.21638/11701/
spbu10.2016.403
19. Aliseyko, A.N.
(2017). Lyapunov's matrixes for a class of systems with an exponential kernel.
Vestnik of Saint Petersburg University. Ser. 13, Applied Mathematics. Computer
Science. Control Processes. vol. 3, 228-240 DOI: 10.21638/11701/spbu10.2017.301