Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

APPLICATIONS OF NANOTECHNOLOGY WITH HYBRID PHOTOVOLTAIC/THERMAL SYSTEMS: A REVIEW


DOI: 10.5937/jaes0-28760 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 794 pages: 292-306

Mohammed Alktranee*
University of Miskolc, Faculty of Mechanical Engineering and Informatics, Department of Fluid and Hea Engineering, Miskolc, Hungary

Southern Technical University, Technical Institute of Basra, Mechanical department, Basrah, Iraq

Péter Bencs
University of Miskolc, Faculty of Mechanical Engineering and Informatics, Department of Fluid and Hea Engineering, Miskolc, Hungary

This paper appears potential of use nanofluids as a working fluid with the photovoltaic/thermal (PV/T) systems as an alternative of the conventional liquids in improves the efficiency of the hybrid PV/T system. The review highlights the impact of some parameters (base fluid, volume fraction, the concentration of nanoparticles, surfactants, shape, and size of nanoparticles) on nanofluids' thermophysical properties and their effect on the PV/T system's efficiencies. Hence, it discusses the PV/T behavior, which uses different nanofluids based on previous experimental, analytical, and numerical studies. The review concluded that using nanofluid as a cooling fluid or spectral filter contributes by enhancing the performance and increasing the PV/T system's efficiency. Thus, each type of nanofluids has certain features that contribute to removing the PV cells' excess heat by cooling it, contributing to its work's stability, and increasing its productivity. Nanofluids thermophysical properties play an intrinsic role by enhancing nanofluids' performance, thus positively reflecting on the PV/T system's performance. Despite the variation in the values of thermal and electrical efficiency, Most of the studies that used nanofluids have achieved encouraging results that appeared by improving the performance of PV/T systems.

View article

1. Kazem HA, Al-Waeli AH, Chaichan MT, Al-Mamari AS, Al-Kabi AH. (2016). Design, measurement and evaluation of photovoltaic pumping system for rural areas in Oman. Environ Dev Sustain. 1–13pp, http:// dx.doi.org/10.1007/s10668- 016-9773-z.

2. R. B. Ganvir, P. V. Walke, V. M. Kriplani. (2017). Heat transfer characteristics in nanofluid - A review. Renewable and sustainable energy reviews, 75, 451- 460

3. Mohammed Al-ktranee, PeterBencs. (2020). Overview of the hybrid solar system. Analecta Technica Szegedinensia journal,Vol. 14, 1.100 -108, doi: 10.14232/analecta

4. Browne MC, Norton B, Mccormack SJ. (2016). Heat retention of a photovoltaic/thermal collector with PCM, Sol Energy, 133:533–48. https://doi. org/10.1016/j. solener.2016.04.024

5. Hasan A, Mccormack SJ, Huang MJ, Sarwar J, Norton B. (2015). Increased photovoltaic performance through temperature regulation by phase change materials: materials comparison in different climates, Sol Energy 2015;115:264–76. https://doi.org/10. 1016/j.solener, 02.003

6. Odeh S, BehniaM.(2017). Improving photovoltaic module using water cooling, Taylor Fr,7632. https:// doi.org/10.1080/01457630802529214

7. Naseem Abbas, Muhammad Bilal Awan, Mohammed Amer, Syed Muhammad Ammard, UzairSajjad, Hafiz Muhammad Ali h, Nida Zahra, MuzamilHussain, Mohsin Ali Badshah, Ali TurabJafry.(2019). Applications of nanofluids in photovoltaic thermal systems: A review of recent advances, Physica A, 536, 122-513

8. Ahmed S. Abdelrazik, FA Al-Sulaimana,R. Saidurb, R. Ben Mansoura. (2018). A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems, Renewable and Sustainable Energy Reviews 95, 110- 129.

9. Solar heat worldwide. International Energy Agency Solar Heating & Cooling Programme.(2016). www.iea shc.org/data/sites/1/ publications/Solar-Heat-Worldwide-2015.pdf.

10. Y. Khanjari, F. Pourfayaz, A.B. Kasaeian. (2016) Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system, Energy Conversion and Management, 122, 263–278

11. A. Makki, S. Omer, and H. Sabir. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cell performance, Renew Sustain. Energy Rev, vol. 41, pp. 658–684

12. V. V Tyagi, S. C. Kaushik, and S. K. Tyagi. (2012). Advancement in solar photovoltaic/thermal (PV / T) hybrid collector technology, Renew. Sustain. Energy Rev, vol. 16, no. 3, pp. 1383–1398

13. Feng C, Zheng H, Wang R, Yu X, Su Y. (2015). A novel solar multifunctional PV/T/D system for green building roofs,Energy Convers Manage, 93:63–71

14. Singh S, Agrawal S, Avasthi DV. (2016). Design, modeling and performance analysis of dual-channel semitransparent photovoltaic thermal hybrid module in the cold environment, Energy Convers Manage, 114, 241–50

15. Wu Y-Y, Wu S-Y, Xiao L. (2015). Performance analysis of the photovoltaic–thermoelectric hybrid system with and without glass cover, Energy Convers Manage, 93, 151–9

16. Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K. (2011)Recent advances in flat-plate photovoltaic/ thermal (PV/T) solar collectors, Renew Sustain Energy Rev, 15(1):352–65

17. Yoon J, Li LF, Semichaevsky AV, Ryu JH, Johnson HT, Nuzzo RG. (2011). Flexible concentrator photovoltaics based on micro-scale silicon solar cells embedded in luminescent waveguides, Nat Commun, 2, 1–8

18. Zafar Saida, Sahil Arorab, Evangelos Bellosc. (2018). A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics, Renewable and Sustainable Energy Reviews, 94, 302–316

19. Bajestan EE, Moghadam MC, Daungthongsuk HNW, Wongwises S. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, Int J Heat Mass Transf, 92, 1041–52

20. Farideh Yazdanifarda, b, Mehran Amerib, Ehsan Ebrahimnia- Bajestanc. (2017). Performance of nanofluid-based photovoltaic/thermal systems: A review. Renewable and Sustainable Energy Reviews, 76 323–352

21. Sokhansefat T, Kasaeian AB, Kowsary F. (2014). Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev, 33, 636–44

22. F.A. Sachit, M.A.M. Rosli, N. Tamaldin, S. Misha, A.L.Abdullah. (2018). Nanofluids Used in Photovoltaic Thermal (PV/T) Systems: a Review. International Journal of Engineering & Technology, 7 3.20, 599- 611

23. Kasaeian A, Eshghi AT, Sameti M. (2015). A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy, Rev, 43, 584–98

24. Verma SK, Tiwari AK. (2015). Progress of nanofluid application in solar collectors: a review. Energy Convers Manag, 100, 46-324

25. Hasanuzzaman M, Malek A, Islam M, Pandey A, Rahim N. (2016). Global advancement of cooling technologies for PV systems: a review. Sol Energy, 137, 25–45

26. Shukla A, Kant K, Sharma A, Biwole PH. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: a review. Sol Energy Mater Sol Cells, 160:275–86.

27. Ali H.A. Al-Waelia, Miqdam T. Chaichanb, Hussein A. Kazema, K. Sopiana.(2019). Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems, Case Studies in Thermal Engineering, 13,100-392.

28. K. H. Solangi, S. N. Kazi, M. R. Luhur, A. Badarudin, A. Amiri, S. Rad, M. N. M. Zubir, G. Samira, K. H. Ten. (2015). A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids', energy, 89, 86-1065

29. M. M. Sarafraz, F. Hormozi. (2015). Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. International Journal of Thermal Sciences, 90, 224- 237

30. S. Manikandan and K. S. Rajan.(2016).Sand-propylene glycol-water nanofluids for improved solar energy collection. Energy, vol. 113, pp. 917–929

31. National Nanotechnology Initiative. (2019). Official website of the United States National Nanotechnology Initiative.n.d., January, https://www.nano.gov

32. Choi, S. U. S. (2009). Nanofluids: From vision to reality through research. Journal of Heat Transfer 131, 33106–33109

33. K. Khanafer and K. Vafai. (2018). A review on the applications of nanofluids in the solar energy field. Renewable energy, vol. 123, pp. 398–406

34. Asmaa Ahmed, Hasan Baig, Senthilarasu Sundaram, and Tapas K. Mallick. (2019). Use of Nanofluids in Solar P.V./Thermal Systems. International Journal of Photoenergy, Hindawi, https://doi. org/10.1155/2019/8039129

35. E. Bellos, Z. Said, and C. Tzivanidis. (2018). The use of nanofluids in solar concentrating technologies: a comprehensive review. Journal of Cleaner Production, vol. 196, pp. 84–99

36. I. M. Mahbubul. (2019). Preparation, Characterization, Properties, and Application of Nanofluid

37. I. M. Mahbubul, E. B. Elcioglu, R. Saidur, and M. A. Amalina. (2017). Optimization of ultrasonication period for better dispersion and stability of TiO2 –water nanofluid,Ultrasonics Sonochemistry, vol. 37, pp. 360–367

38. Kumar, M. S, Vasu, V, &Gopal, A. V. (2016). Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various base fluids. Journal of the Taiwan Institute of Chemical Engineers, 66, 321–327

39. Bozorgan N, Shafahi M. (2015). Performance evaluation of nano-fluids in solar energy: A review of the recent literature. Micro and Nano Systems Letters, 35, 1-15

40. Hussain HA, Jawad Q, Sultan KF. (2015). Experimental analysis on the thermal efficiency of evacuated tube solar collectors by using nanofluids. International Journal of Sustainable and Green Energy, 4:19-28

41. Liu, J, Xu, C, Chen, L, Fang, X, & Zhang, Z. (2017). Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability. Solar EnergyMaterials and Solar Cells,170, 219–232

42. Wisut Chamsa-ard, Sridevi Brundavanam, Chun Che Fung, Derek Fawcett and Gerrard Poinern. (2017). Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review. Journalnanomaterials, 7, 131; DOI:10.3390/ nano7060131

43. Chen, M.; He, Y.; Zhu, J.; Kim, D.R. (2016). Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Convers. Manag, 112, 21–30

44. Milanese M, Colangelo G, Cretì A, Lomascolo M, Iacobazzi F, de Risi A. (2016). Optical absorption measurements of oxide nanoparticles for application as nanofluid indirect absorption solar power systems–Part II: ZnO, CeO2 , Fe2 O3 nanoparticles behavior. Sol Energy Mater Sol Cells,147, 321–6

45. Milanese Marco, Iacobazzi Fabrizio, Colangelo Gianpiero, de Risi Arturo. (2016). An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids. Int J Heat Mass Transfer, 103, 564–71

46. V. Kumaresan and R. Velraj. (2012). Experimental investigation of the thermophysical properties of water-ethylene glycol mixture based CNT nanofluids, Thermochim,Acta, vol. 545, pp. 180–186

47. Su D, Jia Y, Huang X, Alva G, Tang Y, Fang G. (2016). Dynamic performance analysis of photovoltaic– thermal solar collector with dual channels for different fluids 04.095, 120:13–24. DOI: 10.1016/j. enconman

48. Murshed, S.M.S.; Leong, K.C.; Yang, C. (2008). Thermophysical and electrokinetic properties of nanofluids: A critical review. Appl. ThermEng, 28, 2109–2125.

49. Sharma AK, Tiwari AK, Dixit AR. Rheological behavior of nanofluids: a review. (2016). Renewable Sustainable Energy Rev, 53:779–91

50. Li, Q,Yimin, X, Jian, W. (2006). Measurement of the viscosity of dilute magnetic fluids. Int. J.Thermophys, 27, 103–113

51. Hung, Y.H, Wen-Chieh, C. (2012). Chitosan for suspension performance and viscosity of MWCNTs. Int. J. Chem. Eng, 3, 347–353

52. Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA. (2013). Experimental investigation of the thermophysical properties of Al2 O3 -nanofluid and its effect on a flat plate solar collector. IntCommun Heat Mass Transf, 48:99–107.

53. I. C. Nelson, D. Banerjee, and R. Ponnappan. (2009). Flow Loop Experiments Using PolyalphaolefinNanofluids. J. Thermophys, Heat Transf, vol. 23, no. 4, pp. 752–761

54. B. X. Wang, L. P. Zhou, X. F. Peng, X. Z. Du and Y. P. Yang. (2010). On the specific heat capacity of CuOnanofluid. Adv. Mech. Eng, vol. 2010

55. Wang, XQ &Mujumdar, AS . (2008). A review on nanofluids: Part II Experiments and applications. Brazilian Journal of Chemical Engineering, 25(4), 631–348

56. Azmi WH, Sharma KV, Mamat R, Najafi G, Mohamad MS. (2016). The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids e a review. Renewable Sustainable Energy Rev, 53:1046–58

57. Chitra SR, Sendhilnathan S. (2013). An innovative studies and analysis on thermal behavior in nanofluids. Int J SciEng Res, 4(5):284–90

58. Sridhara, V &Satapathy, LN (2015). Effect of nanoparticles on thermal properties enhancement in different oils: A review. Critical Reviews in Solid State and Materials Sciences, 40(6), 399–424

59. S. Manikandan and K. S. Rajan. (2016). Sand-propylene glycol-water nanofluids for improved solar energy collection. Energy, vol. 113, pp. 917–929

60. Jing D, Hu Y, Liu M, Wei J, Guo L. (2015). Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system, Sol Energy,112:30–40

61. Ali H.A. Al-Waeli, K. Sopian, Miqdam T. Chaichan, Hussein A. Kazem, Husam Abdulrasool Hasan, Ali Najah Al-Shamani. (2017). An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system, Energy Conversion and Management, 142, 547–558

62. S.Hassani, R. A. Taylor, S. Mekhilef, and R. Saidur. (2016). A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy, vol. 112, pp. 963–975

63. K. Rahbar, A. Riasi, H. Khatam Bolouri Sangjoeei, and N. Razmjoo. (2019). Heat recovery of nanofluid based concentrating photovoltaic thermal (CPV/T) collector with organic Rankine cycle. Energy Conversion and Management, vol. 179, pp. 373–396

64. An W, Wu J, Zhu T, Zhu Q. (2016). Experimental investigation of a concentrating PV/T collector with Cu9 S5 nanofluid spectral splitting filter. Appl Energy, 184:197–206

65. Michael JJ, Iniyan S. (2015). Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Solar Energy,119:439-51

66. Rejeb, O., Sardarabadi, M., Menezo, C., Passandideh-Fard, M., Dhaou, M.H., Jemni, A. (2016). Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers, Manage, 110, 367–377

67. Mittal T, Saroha S, Bhalla V, Khullar V, Tyagi H, Taylor RA, et al. (2013). Numerical study of solar photovoltaic/thermal (PV/T) hybrid collector using nanofluids. ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer: American Society of Mechanical Engineers, p. V001T02A7- VT02A7

68. Saroha S, Mittal T, Modi PJ, Bhalla V, Khullar V, Tyagi H, et al. (2015). Theoretical Analysis and Testing of Nanofluids-Based Solar Photovoltaic/Thermal Hybrid Collector. Journal of Heat Transfer, 137:091015

69. Hassani S, Taylor RA, Mekhilef S, Saidur R. (2016). A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy,112:963–75

70. M. Chandrasekar, S. Suresh, A.C. Bose. (2010). Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2 O3 /water nanofluid, Exp,Therm Fluid Sci. 34 (2), 210–216

71. M. Chandrasekar, S. Suresh, T. Senthilkumar. (2013). Passive cooling of standalone flat PV module with cotton wick structures, Energy Convers, Manage, 71, 43–50

72. T.-K. Hong, H.-S. Yang, C. Choi. (2005). Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys, 97, (6), 064311

73. Hashim A. Hussein, Ali H. Numan, and Ruaa A. (2017). Abdulrahman, Improving the Hybrid Photovoltaic/Thermal System Performance Using Water-Cooling Technique and Zn-H2 O Nanofluid. Hindawi International Journal of Photoenergy, Volume Article ID 6919054, 14 pages https://doi. org/10.1155/2017/6919054

74. D. Lelea, D.G. Calinoiu, G. Trif-Tordai, A.E. Cioabla, I. Laza, F. Popescu. (2015). The hybrid nanofluid/ microchannel cooling solution for concentrated photovoltaic cells.in: AIP Conf. Proc, AIP, pp. 122–128

75. A. R. A. Hashim, A. Hussien, and A. H. Noman. Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (AL2O3-water). Engineering and Technology Journal, vol. 33, no. 4, pp. 889–901

76. M. Elmir, R. Mehdaoui, and A. Mojtabi. (2012). Numerical simulation of cooling a solar cell by forced convection in the presence of a nanofluid. Energy Procedia, vol. 18, pp. 594–603

77. M. Moradgholi, S. Mostafa Nowee, and A. Farzaneh. (2018). Experimental study of using Al2O3/methanol nanofluid in a two-phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system. Sol. Energy, vol. 164, no. March, pp. 243–250

78. R. Gangadevi, B. K. Vinayagam, and S. Senthilraja. (2107). Experimental investigations of hybrid P.V./ Spiral flow thermal collector system performance using Al2 O3 /water nanofluid. IOP Conf. Ser. Mater. Sci. Eng, vol. 197, p. 12041

79. Xu Z, Kleinstreuer C. (2014). Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Conversion and Management, 87:504-12

80. Xu Z, Kleinstreuer C. (2014). Computational analysis of nanofluid cooling of high concentration photovoltaic cells. Journal of Thermal Science and Engineering Applications, 6:031009

81. Tang LQ, Zhu QZ. (2014). Performance study of flowing-over PV/T system with different working fluid. Applied Mechanics and Materials, Trans Tech Publ, p. 1173-6.

82. Hussien HA, Noman AH, Abdulmunem AR. (2015). Indoor investigation for improving the hybrid photovoltaic /thermal system performance using nanofluid (Al2 O3 -water). Eng Tech J, 33(4):889–901.

83. A. N. Al-Shamani, M. A. Alghoul, A. M. Elbreki, A. A. Ammar, A. M. Abed, and K. Sopian (2018). Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water-based nanofluids. Energy, vol. 145, pp. 770– 792

84. Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. (2013). A review of the applications of nanofluidsin solar energy.Int. J. Heat Mass Transf,57, 582–594.

85. A. N. Al-Shamani, K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, vol. 124, pp. 528-542

86. Sardarabadi M, Passandideh-Fard M, Heris SZ. (2014). Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy, 66:264-72

87. A. Noghrehabadi, E. Hajidavalloo, M. Moravej. (2016). An experimental investigation on the performance of asymmetric conical solar collectors using SiO2/water nanofluid, Transp. Phenom. Nano-Micro Scales, 5 (1) 23–29

88. M. Ghadiri, M. Sardarabadi, M. Pasandideh-Fard, and A. J. Moghadam. (2015). Experimental investigation of a PVT system performance using nanoferrofluids. Energy Conversion and Management, vol. 103, pp. 468–476

89. Jin J, Jing D. (2017). A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Sol Energy,155:51–61,https://doi.org/10.1016/j.solener. 2017.06.030

90. F. Yazdanifard, E. Ebrahimnia-Bajestan, M. Ameri. (2107). Performance of a parabolic trough concentrating photovoltaic/thermal system: effects offlow regime, design parameters, and using nanofluids, Energy Convers. Manage, 148, 1265–1277

91. M. Sardarabadi, M. Passandideh-Fard. (2016). Experimental and numerical study of metal-oxides/ water nanofluids as coolant in photovoltaic thermal systems (PVT), Sol. Energy Mater. Sol. Cells 157, 533–542

92. D. Das, P. Kalita. (2017). Performance improvement of a novel flat plate photovoltaic thermal (PV/T) system using copper oxide nanoparticle—water as coolant, in: International Conference on Nano for Energy and Water, Springer, pp. 97–104

93. E. Bellos and C. Tzivanidis. (2019). Investigation of a nanofluid based concentrating thermal photovoltaic with a parabolic reflector.Energy Conversion and Management, vol. 180, pp. 171–182,

94. M. Hosseinzadeh, A. Salari, M. Sardarabadi, and M. Passandideh-Fard. (2018). Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation, Energy Convers. Manag, vol. 160, no. October 2017, pp. 93–108

95. Yun CUI, Qunzhi ZHU. (2012). Study of Photovoltaic/Thermal Systems with MgOWaterNanofluids Flowing over Silicon Solar Cells, 978-1-4577-0547- 2/12/$31.00 ©2012 IEEE

96. S. Soltani, A. Kasaeian, H. Sarrafha, D. Wen. (2017). An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy, 155,1033–1043

97. Joo Hee Lee, Seong Geon Hwang and Gwi Hyun Lee. (2019). Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies, 12, 3063; DOI:10.3390/en12163063.

98. Yazdanifard, F.; Ameri, M.; Ebrahimnia-Bajestan, E. (2017). Performance of nanofluid-based photovoltaic/thermal systems: A review. Renew. Sustain. Energy Rev, 76, 323–352

99. M. ImtiazHussain, Jin-Hee Kim and Jun-Tae Kim. (2019). Nanofluid-Powered Dual-Fluid Photovoltaic/Thermal (PV/T) System: Comparative Numerical Study, Energies, 12, 775, DOI:10.3390/en12050775

100. M. Sardarabadi, M. Hosseinzadeh, A. Kazemian, and M. Passandideh-Fard. (2017). Experimental investigation of the effects of using metal-oxides/ water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy, vol. 138, pp. 682–695

101. Saber Ragab Abdallah, Hind Saidani-Scott, Osama Ezzat Abdellatif. (2019). Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid, Solar Energy 181,108–115.

102. R. Nasrin, NA. Rahim, H. Fayaz, M. Hasanuzzaman, Water/MWCNT nanofluid based cooling system of PVT. (2018). Experimental and numerical research Renewable Energy, 121, 286-300.

103. Fayaz, H., Nasrin, R., Rahim, N.A., Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: effect of Nanofluid flow rate. Sol. Energy, 169, 217–230.