Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

INVESTIGATION OF LANE–LEVEL GNSS POSITIONing OF VEHICLE IN URBAN AREA


DOI: 10.5937/jaes0-25205 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 819 pages: 515-521

Daulet Akhmedov
Al-Farabi Kazakh National University, AALR "Institute of space technique and technologies", Almaty, Kazahstan

Meirbek Moldabekov
Al-Farabi Kazakh National University, AALR "Institute of space technique and technologies", Almaty, Kazahstan

Denis Yeryomin
Al-Farabi Kazakh National University, AALR "Institute of space technique and technologies", Almaty, Kazahstan

Dinara Zhaxygulova
Al-Farabi Kazakh National University, AALR "Institute of space technique and technologies", Almaty, Kazahstan

Rimma Kaliyeva*
Al-Farabi Kazakh National University, AALR "Institute of space technique and technologies", Almaty, Kazahstan

High quality GNSS (Global Navigation Satellite System) positioning can be useful for numerous engineering tasks, for example, in transport applications concerned to monitoring and optimization of road traffic. In this case lane-level positioning is a relevant task and its solution should satisfy a wide range of users, and thus should be low-cost and easy to use. In this paper the solution of accurate GNSS positioning of the car with the use of differential correction of navigation data in order to provide positioning by the lane level in urban areas of Kazakhstan is investigated. A smartphone is considered as low-cost navigation aid. Navigation data obtained using a smartphone were differentially corrected using the developed software of the Control System for Reference GNSS Station Network relative to one reference station. It is shown that using a smartphone as a navigation aid with further differential correction of data relative to one reference station allows positioning vehicles in motion with an error of 1.4 meters. The result is valuable as a basis for developing intelligent transportation systems.

View article

This research is funded by the Aerospace Commit-tee of the Ministry of Digital Development, Innovations and Aerospace Industry of the Republic of Kazakhstan (BR10664869 "Development of rocket and space tech-nology components and digital technologies for space monitoring, research of objects of near-deep space").

1. Tikhonov, A.N. (1943). On the stability of inverse problems. Dokl. AN SSSR (Moscow), 39(5), 195-198.

2. Cina, A., Dabove, P., Manzino, A.M., Piras, M. (2015). Network Real Time Konematic (NRTK) Positioning - Description, Architectures and Performances. Jin, S. (Eds.), Satellite Positioning - Methods, Models and Applications. IN-TECH, London, p. 23-45, DOI: 10.5772/59083

3. Kouba, J., Heroux, P. (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solution, vol. 5, no. 2, 12-28, DOI: 10.1007/PL00012883

4. Soycan, M., Ata, E. (2011). Precise point positioning versus traditional solution for GNSS networks. Scientific research and essays, vol. 6, no. 4, 799-808.

5. Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS Satellite Surveying. Wiley, New Jersey, DOI: 10.1002/9781119018612

6. Kuzmin, Yu.O. (2019). Recent Geodynamics: from Crustal Movements to Monitoring Critical Objects. Izvestiya, Physics of the Solid Earth, vol. 55, no. 1, 65-86, DOI: 10.1134/S106935131901004X

7. Dabove, P. (2019). The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geo¬dynamics, vol. 10, no. 4, 282-289, DOI: 10.1016/j. geog.2019.04.006

8. Zhang, N., Wang, M., Wang, N. (2002). Precision agriculture - A worldwide overview. Computers and Electronics in Agriculture, vol. 36, no. 2-3, 113-132, DOI: 10.1016/S0168-1699(02)00096-0

9. Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, Ch., Fairbairn, D., Watson, D., Ge, M. (2018). Multi-GNSS precise point positioning for precision agriculture. Precision Agriculture, vol. 19, no. 5, 895-911, DOI: 10.1007/s11119-018-9563-8

10. Cina, A., Piras, M. (2015). Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomatics, Natural Hazards and Risk, vol. 6, no. 5-7, 497-514, DOI: 10.1080/19475705.2014.889046

11. Awange, J.L. (2012). Environmental Monitoring Using GNSS. Environmental Science and Engineering. Springer, Heidelberg.

12. Murrian, M., Gonzalez, C.W., Humphreys, T.E., Pesn¬ya, K.M., Shepard, D.P., Kerns, A.J. (2016). Low-cost precise point positioning for automated vehicle. GPS World, vol. 27, no. 9, 32-39.

13. Patrik, A., Utama, G., Gunawan, A.A.S., Chowanda, A., Suroso, J.S., Shofiyanti, R., Budiharto, W. (2019). GNSS-based navigation systems of autonomous drone for delivering items. Journal of Big Data, vol. 6, 53, DOI: 10.1186/s40537-019-0214-3

14. Lovas, T., Wieczynski, A., Baczyncka, M., Perski, A., Kertesz, I., Berenyi, A., Barsi, A., Beeharee, A.K. (2011). Positioning for Next Generation Intelligent Transport Systems Services in SafeTRIP. The American Society for Photogrammetry and Remote Sensing Annual Conference.

15. Marais, J., Ambellouis, S., Flancquart, A., Lefebvre, S., Meurie, C., Ruichek, Y. (2018). Accurate Localisation Based on GNSS and Propagation Knowledge for Safe Applications in Guided Transport. Procedia - Social and Behavioral Sciences, vol. 48, 796-805, DOI: 10.1016/j.sbspro.2012.06.1057

16. Du, J., Barth, M.J. (2008). Next-Generation Auto¬mated Vehicle Location Systems: Positioning at the Lane Level. IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, 48-57, DOI: 10.1109/ TITS.2007.908141

17. Gu, Y., Hsu, L.T., Kamijo, S. (2018). Towards lane-level traffic monitoring in urban environment using precise probe vehicle data derived from three-dimensional map aided differential GNSS. IATSS Research, vol. 42, no. 4, 248-258,DOI: 10.1016/j.iatssr.2018.03.001

18. Miucic, R. (2018). Connected Vehicles: Intelligent Transportation Systems. Springer, Cham, DOI: 10.1007/978-3-319-94785-3

19. Alagoz, B.B., Erturkler, M., Yeroglu, C. (2019). A theoretical investigation on moving average filtering solution for fixed-path map matching of noisy position data. International Journal of Sensor Net¬works, vol. 29, no. 4, 213-225, DOI: 10.1504/IJSNET.2019.098554

20. Garrido-Carretero, M. S., de Lacy-Perez de los Cobos, M. C., Borque-Arancon, M. J., Ruiz-Armenteros, A.M., Moreno-Guerrero, R., Gil-Cruz, A.J. (2019). Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: a feasible option in geomatics. Measurement, vol. 137, 168-178, DOI: 10.1016/j.measurement.2019.01.045

21. Mahato, S., Santra, A., Bose, A., Mondal, R., Khan, S.A. (2018). Low-cost GNSS Receivers for Geodetic Applications. National Level Conference on the Application of Geospatial Technology in Research and Development, p. 31-32.

22. Ogutcu, S. (2020). Simulation case study of displacement monitoring using network derived positioning. Geomatics, Natural Hazards and Risk, vol. 11, no. 1, 1031-1051, DOI:10.1080/19475705.2020.1772382

23. Biagi, L., Grec, F.C., Negretti, M. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements. Sensors. 2016, vol. 16, no. 12, 2140, DOI: 10.3390/s16122140

24. Antonov, D.A., Zharkov, M.V., Kuznetsov, I.M., Chernodubov, A.Yu. (2016). Vehicle navigation system ac¬curacy and noise immunity improvement techniques. Trudy MAI, no. 90, 13.

25. Ben-Monshe, B., Elkin, E., Levi, H., Weissman, A. (2011). Improving Accuracy of GNSS Devices in Ur¬ban Canyons. Proceedings of the 23rd Annual Canadian Conference on Computational Geometry.

26. Li, X., Jiang, R., Song, X., Li, B. (2017). A Tightly Coupled Positioning Solution for Land Vehicles in Urban Canyons. Journal of Sensors, vol. 2017, DOI: 10.1155/2017/5965716

27. Wu, Z., Xie, J., Wang, Y., & Nie, Y. (Marco). (2020). Map matching based on multi-layer road index. Trans-portation Research Part C: Emerging Technologies, vol. 118, 102651, DOI:10.1016/j.trc.2020.102651

28. Liu, F., Liu, Y., Nie, Z., & Gao, Y. (2020). Precise Single-Frequency Positioning Using Low-Cost Receiver with the Aid of Lane-Level Map Matching for Land Vehicle Navigation. Journal of Navigation, 1-14, DOI:10.1017/s0373463320000375

29. Elazab, M., Noureldin, A., Hassanein, H. S. (2017). Integrated cooperative localization for Vehicular net¬works with partial GPS access in Urban Canyons. Vehicular Communications, vol. 9, 242-253, 10.1016/j. vehcom.2016.11.011

30. Sun, Q.Ch., Xia, J.C., Foster, J., Falkmer, T., Lee, H. (2017). Pursuing Precise Vehicle Movement Trajectory in Urban Residential Area Using Multi-GNSS RTK Tracking. Transportation Research Procedia, vol. 25, 2356-2372, DOI: 10.1016/j.trpro.2017.05.255

31. Tradacete, M., Saez, A., Arango, J.F., Huelamo, C.G., Revenga, P., Barea, R., Lopez-Guillen, E., Bergasa, L.M. (2018). Positioning System for an Electric Autonomous Vehicle Based on the Fusion of Multi- GNSS RTK and Odometry by Using an Extented Kalman Filter. The 19th International Workshop of Physical Agents - Advances in Physical Agents, p. 16-33, DOI: 10.1007/978-3-319-99885-5_2

32. Zhang, K., Jiao, W., Wang, L., Li, Z., Li, J., Kai, Z. (2019). Smart-RTK: Multi-GNSS kinematic positioning approach on android smart devices with Doppler-smoothed-code filter and constant acceleration model. Advances in Space Research, vol. 64, no. 9, 1662-1674, DOI: 10.1016/j.asr.2019.07.043

33. Wang, L., Li, Z., Zhao, J., Zhou, K., Wang, Z., Yuan, H. (2016). Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors, vol. 16, no. 12, 2201, DOI: 10.3390/s16122201

34. Specht, C., Dabrowski, P., Pawelski, J., Specht, M, Szot, T. (2019). Comparative Analysis of Positioning Accuracy of GNSS Receivers of Samsung Galaxy Smartphones in Marine Dynamic Measurements. Advances in Space Research, vol. 63, no. 9, 3018- 3028, DOI: 10.1016/j.asr.2018.05.019

35. Liu, W., Shi, X., Zhu, F., Tao, X., Wang, F. (2019). Quality analysis of multi- GNSS raw observations and a velocity-aided positioning approach based on smartphones. Advances in Space Research, vol. 63, no. 8, 2358-2377, DOI: 10.1016/j.asr.2019.01.004