Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

INVESTIGATION OF POTENTIAL LANDSLIDES DUE TO LIQUEFACTION ON THE BALAROA ROAD SECTION USING THE LIMIT EQUILIBRIUM METHOD


DOI: 10.5937/jaes0-28853 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 827 pages: 556-563

Sriyati Ramadhani*
Tadulako University, Department of Civil Engineering, Palu, Indonesia

Martini
Tadulako University, Department of Civil Engineering, Palu, Indonesia

Mastura Labombang
Tadulako University, Department of Civil Engineering, Palu, Indonesia

Shafira Yuniar Anwar
Tadulako University, Department of Civil Engineering, Palu, Indonesia

The earthquake on September 28, 2018 in Palu city triggered liquefaction. The liquefaction affected several areas, including Balaroa. Some parts in Balaroa experienced landslide such as the road section which formed the slope. The purpose of this study was to identify the potential of landslides due to liquefaction in Balaroa road section based on numerical modeling using the limit equalibrium method. This study was conducted in Balaroa, West Palu sub district, Palu City, Central Sulawesi Province. The slope stability analysis modelled three locations prone to landslides using the limit equalibrium method assisted by Slide 7.0 program.The results showed the safety factor value of hose three locations in Balora road section using methods of Ordinary, Bishop and Janbu was FS<1. It indicated that the slope is in unsafe condition and vulnerable to lanslides, therefore the government should take this study into consideration.

View article

The authors highly appreciate to the Tadulako University for funding this research in the form of research grant. Many thanks are also given to research team for their significant contribution during data collection in the research field. We also thank the head and the technicians of the Soil Mechanics Laboratory of Engineering Faculty for their assistance during the laboratory study.

1. B.N.P.B (2018). Indeks Risiko Bencana Indonesia (IRBI) tahun 2018. Direktorat Pengurangan Risiko Bencana, BNPB.

2. BPS, K. P. (2019). Kecamatan Palu Barat dalam Angka. Kota Palu:, Badan pusat Statistik Kota Palu.

3. Pusgen. (2019). Investigasi Awal Longsor-Likuifaksi Geotechnical Extreme Events Reconnaissance (GEER) Akibat Gempa Palu 28 September 2018 (Geotechnical Repot on 2018 Palu-Donggala Earthquake); Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat.

4. https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/zrb_palu_dsk_alternatif_1_11des.pdf (diakses, 6 Oktober 2020, Pukul 09:53).

5. Ramadhani, S. (2011). Kondisi Seismisitas dan Dampaknya untuk Kota Palu. Jurnal Teknik Sipil Infrastruktur. 1(2), 111-119. http://jurnal.untad.ac.id/jurnal/index.php/JTSI/article/view/692.

6. Sinarta, I.N., & Basoka, I.W.A (2019). The Potential of Liquefaction Disasters Based on The Geological, CPT and Borehole Data at Southern Bali Island. Journal of Applied Engineering Science. 17(4), 642, 535 - 540. doi: 10.5937/jaes17-20794

7. Liu, H., Yang, T., & Qin, Y. (2011). Analysis of Excavating High Slope by Means of Finite Element Method. ICTE, pp 1660-1665. https://ascelibrary.org/doi/pdf/10.1061/41184%28419%29274.

8. Ramadhani, S., Rifa’I, A., Suryolelono, K. B., & Wilopo, W. (2018). Slope Stability of Metamorphic Rocks Based on Rock Mass Classification at Poboya Gold Mine, Central of Sulawesi Province. International Review of Civil Engineering, Vol. 9 (No. 3): 91-97. https://doi.org/10.15866/irece.v9i3.13889

9. Widyaningrum, W. (2012). Penyelidikan Geologi Teknik Potensi Likuifaksi Daerah Palu, Provinsi Sulawesi Tengah, Kementrian Energi dan Sumber Daya Mineral, Badan Geologi, Pusat Sumber Daya Air Tanah dan Geologi Lingkungan.

10. de Vallejo, L. I., & Ferrer, M. (2011). Geological Engineering. London, New York: CRC Press Taylor dan Francis Group.

11. Ureel, S., & Momayez, M. (2014). An Investigation of The Limit Equilibrium Method and Numerical Modeling for Rock Slope Stability Analysis. Rock Mechanics and Its Application in Civil, Mining, and Petroleum Engineering, 218-227. https://ascelibrary.org/doi/abs/10.1061/9780784413395.025

12. Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2002). Slope Stability and Stabilization Methods (2nd ed ed.). New York: John Wiley & Sons, Inc.

13. Hoek, E. (1991). When is a Design in Rock Engineering Acceptable. 3, hal. 1485-1497. Aachen: Proceedings of The 7th International Congress on Rock Mechanics.

14. SNI 8460. (2017). Persyaratan Perancangan Geoteknik. Jakarta: Badan Standarisasi Nasional.

15. Zhao, M., Liu, J., Chen, B., & Liu, D. (2007). Variable weight combination forecasting model of slope deformation and instability. Rock and Soil Mechanics, 28(s1), hal. 553-557. China. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2007S1112.htm

16. Zhang, L., Liu, J., Fu, H., & Guo, Z. (2011). Analysis on Dynamic Stabi https://ascelibrary.org/doi/abs/10.1061/47628(407)24lity of Rock Slope in Seismic Area in Sichuan Province. ASCE, 217, 188-194.

17. Lu, L., Wang, Z., Huang, X., Zheng, B., & Arai, K. (2014). Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/573962

18. Luo, Y., Wang, Y., Fu, R., & Liu, J. (2013). Study on Formation Mechanism of Liujiawan Landslide Tringgered by Wenchuan Earthquake. IACGE. https://ascelibrary.org/doi/abs/10.1061/9780784413128.009

19. Rocscience. (2018). Slide 7.0 Program. Toronto, Ontario, Canada: Rocscience Inc.

20. Pusgen. (2017). Peta Sumber dan Bahaya Gempa Indonesia 2017. Jakarta: Pusat Studi Gempa Nasional.