Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

MULTI-OBJECTIVE OPTIMIZATION OF TURNINg PROCESS USING A COMBINATION OF TAGUCHI AND VIKOR METHODS


DOI: 10.5937/jaes0-29654 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 863 pages: 868-873

Nhu-Tung Nguyen*
Hanoi University of Industry, HaUI Institute of Technology - HIT, Hanoi city, Vietnam

Van Thien Nguyen
Hanoi University of Industry, Faculty of Mechanical Engineering, Hanoi city, Vietnam

Dung Hoang Tien
Hanoi University of Industry, Faculty of Mechanical Engineering, Hanoi city, Vietnam

Duc Trung Do
Hanoi University of Industry, Faculty of Mechanical Engineering, Hanoi city, Vietnam

This study presents the solving process of the multi-objective optimization problem using VIKOR method (Vlse Kriterijumska Optimizacija Kompromisno Resenje, in Serbian)whenturning the EN 10503 steel. The cutting velocity, feed rate, depth of cut, and insert nose radius were chosen as the input parameters with three levels of each parameter. Taguchi L9orthogonal array was used to design the experimental matrix with nine experiments.By the combination of Taguchi and VIKOR methods, the multi-objective optimization problem was successfully solved with optimal values (cutting velocity of 78.62 m/min, feed rate of 0.08 mm/rev, cutting depth of 0.5 mm, and insert nose radius of 0.6 mm. Using these the optimized input parameters, the surface roughness, cutting force and vibration component amplitudes (in X, Y, Z directions), and material removal rate (MRR) were 0.621 µm, 191.084 N, 51.727 N, 300.162 N, 4.465 µm, 7.492 µm, 10.118 µm, and 60.009 mm3/s, respectively.This proposed method could be used to improve the quality and effectiveness of turning processes by improving the surface quality, reducing the cutting force and vibration amplitudes, and increasing the material removal rate.

View article

The authors thank Faculty of Mechanical Engineering, Hanoi University of Industry, to support the measurement system during the implementation of this study.

1. Dich, T.V., Binh, N.T., Dat, N.T., Tiep, N.V., Viet, T.X. (2003). Manufacturing technology, Science and Technics Publishing House, Ha Noi.

2. Pankaj, K. S., Novel, K.S., &Ankit, D.(2017). Optimization of cutting parameters by turning operation in lathe machine, International Journal of Mechanical and Production Engineering, Vol. 5, No. 11, (2017), 46-51.

3. Lazarević, D., Madić, M., Janković, P., Lazarević, A. (2012).Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method, Tribology in Industry, Vol. 34, No. 2, pp. 68-73.

4. Subhabrata, B., Sumon, K., Supratim, C., Arpita, C. (2017).Process parameter optimization in lathe turning operation to improve the surface roughness and reduce the cutting force using Taguchi method, International journal of innovations in engineering research and technology, Vol. 8, No. 8, pp. 1-8.

5. Kajal, S., & Yadav, S. (2015). Optimization of CNC turning parameters for surface roughness on EN 354 steel using Taguchi method. J Mater Sci Mech Eng, 2, pp.54-57.

6. Dutta, S., & Narala, S. K. R. (2021). Optimizing turning parameters in the machining of AM alloy using Taguchi methodology. Measurement, 169, 108340. doi: https://doi.org/10.1016/j.measurement.2020.108340

7. Gupta, M., & Kumar, S. (2015). Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method. Engineering Science and Technology, an International Journal, 18(1), 70-81, doi: https://doi.org/10.1016/j.jestch.2014.09.006

8. Kechagias, J. D., Aslani, K. E., Fountas, N. A., Vaxevanidis, N. M., & Manolakos, D. E. (2020). A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement, 151, 107213,doi: https://doi.org/10.1016/j.measurement.2019.107213.

9. Patod, S. K., & Sharma, D. S. (2019). Optimization of CNC Turning Cutting Parameter for Geometrical Dimensional Accuracy with Surface roughness on the non-ferrous Material Applying Taguchi Technique. International Journal of Engineering Trends and Technology, 67(12), 56-66.

10. Mia, M., & Dhar, N. R. (2017). Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology, 88(1-4), 739-753, doi: https://doi.org/10.1007/s00170-016-8810-2.

11. S.P.Shahebrahimi, S.P., Dadvand, A. (2013). Optimization of Cutting Parameters for Turning Operation of Titanium Alloy Ti-6Al-4V Material Workpiece using the Taguchi Method, Advanced Materials Research, 685, 57-62

12. Sonowal, D., Sarma, D., Barua, P. B., & Nath, T. (2017). Taguchi optimization of cutting parameters in turning AISI 1020 MS with M2 HSS Tool. In IOP Conference Series: Materials Science and Engineering, 225 (1), 012186. IOP Publishing, doi:10.1088/1757-899X/225/1/012186.

13. Aswal, A., Jha, A., Tiwari, A., & Modi, Y. K. (2019). CNC Turning Parameter Optimization for Surface Roughness of Aluminium-2014 Alloy Using Taguchi Methodology, Journal Européen des Systèmes Automatisés, 52 (4), 387-390, doi: https://doi.org/10.18280/jesa.520408.

14. ÖZDEMİR, M. (2019). Optimization with Taguchi method of influences on surface roughness of cutting parameters in CNC turning processing. Mechanics, 25(5), 397-405, doi: https://doi.org/10.5755/j01.mech.25.5.23005.

15. Upletawala, M. A. I., & Katratwar, T. (2016). Optimization of Cutting Parameters for Turning Operation on Thermoplastic Polymer-Delrin 500AL. International Journal of Innovative Research in Science, Engineering and Technology, 5(8), 15545 – 15553,

16. Meenu, G., Surinder, K. (2013). Multi-objective optimization of cutting parameters in turning using grey relational analysis, International Journal of Industrial Engineering Computations,4, 547–558.

17. Basmaci, G. (2018). Optimization of machining parameters for the turning process of AISI 316 L stainless steel and Taguchi design. Acta Physica Polonica A, 134(1), 260-264.

18. Guvenc, M. A., Cakir, M., & Mistikoglu, S. (2019). Experimental study on optimization of cutting parameters by using Taguchi method for tool vibration and surface roughness in dry turning of AA6013. In 10th International Symposium on Intelligent Manufacturing and Service Systems, pp. 1032-1040.

19. Vladimir, A.R., Ghorbani, S. (2013). Optimization of Surface Roughness and Vibration inTurning of Aluminum Alloy AA2024 Using Taguchi Technique, International Journal of Mechanical, Industrial Science and Engineering, 7(11), 869-878.

20. Singaravel, B., & Selvaraj, T. (2016). Application of Taguchi method for optimization of parameters in turning operation. Journal for Manufacturing Science and Production, 16(3), 183-187., doi: 10.1515/jmsp-2016-0004

21. Dinh, L.C. (2016). The integrated model of GIS and AHPVIKOR for evaluating sustainable land-use management. Science & technology development, 19(4), 97-104 (in Vietnamese).

22. Gangil, M., & Pradhan, M. K. (2018). Optimization the machining parameters by using VIKOR Method during EDM process of Titanium alloy. Materials Today: Proceedings, 5(2), 7486-7495, doi: https://doi.org/10.1016/j.matpr.2017.11.420.

23. Bhuyan, R., & Routara, B. (2016). Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composite. Decision Science Letters, 5(2), 269-282, doi: 10.5267 / j.dsl.2015.11.00.

24. Kumar, G. V. A., Reddy, D. V. V., & Nagaraju, N. (2018). Multi-Objective Optimization of End Milling Process Parameters in Machining of EN 31 Steel: Application of AHP Embedded with VIKOR and WASPAS Methods. i-Manager's Journal on Mechanical Engineering, 8(4), 39-46, doi: https://doi.org/10.26634/jme.8.4.14676.

25. Opricovic, S., Tzeng, G.H. (2004). Compromise solution by MCDM method: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156, 445-455