Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

INVERSE DISTANCE INTERPOLATION FOR USED IN UNSTRUCTURED MESH FINITE VOLUME SOLVER


DOI: 10.5937/jaes0-34022 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 966 pages: 597-601

Adek Tasri*
Mechanical Engineering Department, Universitas Andalas, Padang 25163, Indonesia

This article discusses adjusting inverse distance interpolation for use in unstructured mesh finite volume solutions. The adjustment was made on the weight function of the inverse distance interpolation using the Laplacian of the flow variable inside a Voronoi-dual of finite volume cells. We tested the accuracy of the adjusted inverse distance interpolation on two-dimensional potential flows. It was found that the adjusted and standard inverse distance interpolations have a similar degree of accuracy when used in unstructured, Delaunay based, finite volume mesh. However, the L1 norm error of the adjusted version of the inverse distance interpolation was much smaller than the L1 norm error of the standard version.

View article

1. Tasri, A. (2021). Accuracy of cell centres to vertices interpolation for unstructured mesh finite volume solver, J. Inst. Eng. India Ser. C, vol. 102, 557-584. DOI: 10.1007/s40032-021-00697-5

2. Tasri, A. (2010). Simple improvement of momentum interpolation equation for Navier-Stoke equation solver on unstructured grid, Journal of Mathematics and Statistics, vol. 6, 265-270.

3. Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM national conference. p. 517-524.

4. Frink, N.T. (1992). Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes. AIAA journal, vol.1, 70-7, DOI: 10.2514/3.10884

5. Fluent AN. (2018). Ansys fluent theory guide. ANSYS Inc., USA.

6. Shen, C.Y, Reed, H.L, Foley, T.A. (1993). Shepard's interpolation for solution-adaptive methods. Journal of Computational Physics, vol. 106, 52-61, DOI: 10.1006/jcph.1993.1090

7. Akima, H. (1978). A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software (TOMS), vol. 4, 148-59, DOI: 10.1145/355780.355786

8. Lu, G.Y., Wong, D.W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, vol. 1, 1044-55, DOI: 10.1016/j.cageo.2007.07.010

9. Azpurua, M.A., Dos Ramos, K. (2010). A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Progress In Electromagnetics Research M, vol 14, 135-45. DOI: 10.2528/PIERM10083103

10. Gotway, C.A., Ferguson, R.B., Hergert, G.W., Peterson, T.A. (1996). Comparison of kriging and inverse‐distance methods for mapping soil parameters. Soil Science Society of America Journal, vol. 4, 1237-47. DOI: 10.2136/sssaj1996.03615995006000040040x

11. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F. (2000). Spatial interpolation of ambient ozone concentrations from sparse monitoring points in Belgium. Journal of Environmental Monitoring, vol. 8, 1129-35. DOI: 10.1039/b612607n

12. Golkhatmi, N.S., Sanaeinejad, S.H., Ghahraman, B., Pazhand, H.R. (2012). Extended modified inverse distance method for interpolation rainfall. International Journal of Engineering Inventions, vol. 1, 57-65.

13. Ke, W., Cheng, H.P., Yan, D., Lin. C. (2011). The Application of cluster analysis and inverse distance weighted interpolation to appraising the water quality of three forks lake. Procedia Enveromental Science, vol. 10, 2511-2517. DOI: 10.1016/j.proenv.2011.09.391.

14. Franke, R., Nielson, G. (1980). Smooth interpolation of large sets of scattered data. International Journal for Numerical Methods in Engineering. vol. 15, 1691-704. DOI: 10.1002/nme.1620151110

15. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P. (2005). Multi-level partition of unity implicits, Acm Transactions on Graphic, vol. 22, 463-470. DOI: 10.1145/882262.882293

16. Liu Z, Zhang Z, Zhou C, Ming W, Du Z. (2021). An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling. Geosciences. Vol. 11, 51-69. DOI: 10.3390/geosciences11020051.

17. Henderson N, Pena L. (2017). The inverse distance weighted interpolation applied to a particular form of the path tubes Method: Theory and computation for advection in incompressible flow. Applied Mathematics and Computation. Vol. 11, 114-135. DOI: 10.3390/geosciences11020051

18. Maleika W. (2020). Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics. vol. 4, 397-407. DOI: 10.1007/s12518-020-00307-6

19. White, F.M. Fluid mechanics (2015). Mc Graw-Hill, New York.

20. Milne-Thomson, L.M. (1996). Theoretical hydrodynamics. Courier Corporation.

21. Vallentine, H.R. (1969). Applied hydrodynamics, S.I. Edition. Butterworths.

22. Glauert, H. (1937). The Elements of aerofoil and airscrew theory. Cambridge University Press, UK.

23. Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J. (2017). A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids, vol. 29, 127103. DOI: 10.1063/1.4997682

24. Tasri, A., Susilawati, A. (2021). Accuracy of compact-stencil interpolation algorithms for unstructured mesh finite volume solver. Heliyon, vol. 7, e06875. DOI: 10.1016/j.heliyon.2021.e06875.

25. Tasri, A. (2021). Applying One-Dimensional TVD Scheme to Unstructured Mesh Finite Volume Solver. (2021). Journal of Mechanical Engineering Research and Developments, vol. 44, 400-407.

26. Nishikawa, H., (2021). The QUICK scheme is a third‐order finite‐volume scheme with point‐valued numerical solutions. International Journal for Numerical Methods in Fluids, vol. 93, 2311-2338.