DOI: 10.5937/jaes0-35071
This is an open access article distributed under the CC BY 4.0
Volume 20 article 970 pages: 626-633
The article provides a brief description of a prototype of a new grinding equipment – a labyrinth disintegrator, manufactured according to our developments, as well as the results of semi-industrial tests on various materials with different hardness and brittleness. A scheme for grinding the material and a dynamic scheme for moving the material through the labyrinths are presented. The results of sieve analyze of selected materials are presented, and granulometric curves for the distribution of particles of materials are constructed.
1. Rosenow, J., Cowart, R., Thomas, S., (2018) Market-based instruments for energy efficiency: a global review, vol.12, 5-th release, 1379-1398, DOI: 10.1007/s12053-018-9766-x.
2. Dudak, N., Taskarina, A., Kasenov, A., Itybaeva, G., Mussina, Z., Abishev, K., Mukanov, R. (2017) Hole Machining Based on Using an Incisive Built-Up Reamer. International Journal of Precision Engineering and Manufacturing, vol.18, Issue 10, 1425-1432, DOI: 10.1007/s12541- 017-0170-9.
3. Xu, Y., Zhang, B., Feng, G. (2022) Electromagnetic design and thermal analysis of module combined permanent magnet motor with wrapped type for mine ball mill. IET Electric Power Applications, 16(2),139–157, DOI: 10.1049/elp2.12141.
4. Gao, MW, Forssberg, E. Prediction of product size distributions for a stirred ball mill, vol.84, P 101-106, DOI: 10.1016/0032-5910(95)02990-J.
5. Romanovich, A.A., Romanovich, L.G., Chekhovskoy, E.I. (2018) Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill, IOP Conference Series: Materials Science and Engineering,vol.327, Issue 4, DOI: 10.1088/1757-899X/327/4/042091.
6. Lucie, D., Pavel, K., Michaela, R., Martin, D., Karel, D., Melita, M., Ladislav, C. (2018) Optimization of molybdenum powder milling parameters.Obrabotkametallov-metal working and material science, № 3, 109-122, DOI: 10.17212/1994-6309-2018-20.3-109-122.
7. Yu, Y., Guo, PQ., Cao, YK., Wang, XW., Zhang, P., (2012) Development and Key Technologies of High-speed Grinding. Materials Science Forum,vol.723, 445-449, DOI: 10.4028/www.scientific.net/MSF.723.445.
8. Tukarambai M., Hemanth Varma M.S., Raju ChA.I. (2020) Batch grinding studies by a ball mill for hematite ore,10th International Conference of Materials Processing and Characterization, ICMPC 2020,vol.26, 825 - 832DOI: 10.1016/j.matpr.2019.12.425
9. Osnovymetallurgii. T. 7. Tekhnologicheskoeoborudovaniepredpriyatijcvetnojmetallurgii. – M. :Metallurgiya, 1975, 255-256.
10. Taskarina, A.ZH., Abdrahmanov, E.S., Tusupbekova, M.ZH., Tyulyubaev, R.A., Dejgraf, I.E. (2021) Konstrukciyanovogorazmalyvayushchegooborudovaniya.Mezhdunarodnayanauchno-prakticheskayakonfe-renciya «XIII Torajgyrovskiechteniya». – Pavlodar: Torajgyrovuniversitet, vol. 4, 241-245
11. Centrobezhnyjizmel'chitel' vstrechnogoudara RU 2150323C1, MPK V02S13/20, 10.06.2000.
12. Centrobezhnyjdiskovyjizmel'chitel' RU2739426C1, MPK V02S 7/00 V02S 13/2024.12.2020.
13. Kurytnik, I., Nussupbekov, B.R.,Khassenov, A.K.,Karabekova, D.Z.(2015) Disintegration of copper ores by electric pulses, vol.60, 2549-2551, DOI: 10.1515/amm-2015-0412
14. Semikopenko, I.A., Belyaev, D.A.(2021)Theoretical study of the kinetics of material destruction in a disintegrator with a preliminary grinding unit.Lecture notes in civil engineering, vol. 160, 161-167,DOI:10.1007/978-3-030-75182-1_22
15. Zheng Y., Kuznetsova M.M., Ved’ V.E., Aleksina A.A.(2016) Experimental studies of the energetically effective conditions of grinding of solids. Technical Physics, vol. 61,№ 5, 703-706, DOI:10.1134/S1063784216050273