DOI: 10.5937/jaes0-35082
This is an open access article distributed under the CC BY 4.0
Volume 20 article 1004 pages: 987-999
Double sheet blank hydro-forming (DSBH) is a technology for forming hollow parts with complex shapes. The pair of workpieces is deformed and shaped by the high-pressure liquid inside. The material is thinned after hydraulic forming, which significantly affects the quality of the product, especially the fields with high requirements, such as the automotive and aerospace industry. The goal of optimizing input process parameters to ensure that the level of thinning into a product is within the allowable limit is posed by this study. This study considered blank holder force, forming fluid pressure, and relative thickness as candidate factors for optimization using Response Surface Method (RSM). The spherical parts were formed by the DSBH method of welding blank pairs of DC04 carbon steel material based on theoretical analysis, experiment solution, and experiment to verify the results. Experiments were performed with different combinations of parameters using the Box-Behnken design. This paper presented a mathematical model that helps determine material thinning rate according to these three process parameters in the hydro-forming of spherical parts from welded sheet metal pairs. The research results can be applied to control the input parameters in the DSBH to achieve the wall thickness of the spherical part as desired by the manufacturer.
This study was supported by Industrial Machinery and Instruments Holding Joint Stock Company (IMI HOLDING).
1. Colin Bell., Jonathan Corney., Nicola Zuelli., David Savings. (2020). A state of the art review of hydro-forming technology. International Journal of Material Forming, vol. 13, no. 3, 789-828, DOI:10.1007/s12289-019-01507-1
2. Chris V. Nielsen., Paulo A.F. Martins. (2021). Formability. Metal forming, 1st ed. Elsevier Inc, London, United Kingdom, p. 53-95.
3. Harjinder Singh (2003). Sheet Metal Hydroforming. Fundamentals of hydro-forming, 1st ed. Society of Manufacturing Engineers, Michigan, United States of America, p. 46-54.
4. Koç M. (2008). Introduction and state of the art of hydro-forming. Hydro-forming for advanced manufacturing, 1st ed. Woodhead Publishing Limited: Cambridge, England, p. 1-29.
5. Manuel Geiger., Marion Merklein., Massimo Cojutti. (2009). Hydro-forming of inhomogeneous sheet pairs with counterpressure. Production Engineering, vol. 3, no. 1, 17-22, DOI:10.1007/s11740-008-0128-y
6. Merklein, M., Geiger, M., Celeghini, M. (2005). Combined tube and double sheet hydro-forming for the manufacturing of complex parts. CIRP Annals - Manufacturing Technology, vol. 54, no. 1, 199-204, DOI:10.1016/S0007-8506(07)60083-3
7. Dayong Chen., Yong Xu., Shihong Zhang., Zhangjian Zhao., Ali Abd El-Aty., Yan Ma., Jingming Li. (2018). Evaluation of numerical and experimental investigations on the hybrid sheet hydro-forming process to produce a novel high-capacity engine oil pan, The International Journal of Advanced Manufacturing Technology, vol. 97, no. 1, 3625–3636, DOI:10.1007/s00170-018-2124-5
8. Carlo Bruni., M. Celeghini., Manuel Geiger., M. Celeghini. (2007). A study of techniques in the evaluation of springback and residual stress in hydro-forming, The International Journal of Advanced Manufacturing Technology, vol. 33, no. 9, 929-939, DOI:10.1007/s00170-006-0539-x
9. Cristina Churiaque., Jose Maria Sánchez-Amaya., Francisco Caamaño., Juan Manuel Vázquez Martínez. (2018). Springback Estimation in the Hydroforming Process of UNS A92024-T3 Aluminum Alloy by FEM Simulations. Metals - Open Access Metallurgy Journal, vol. 8, no. 6, 404–420, DOI:10.3390/met8060404
10. Lu Huang., Xiaoming Chen., Dunji Yu., Yan Chen., Ke An. (2018). Residual Stress Distribution in a Hydroformed Advanced High Strength Steel Component: Neutron Diffraction Measurements and Finite Element Simulations. Conference: WCX World Congress Experience, SAE Technical Paper, vol. 01, n0. 0803, 7, DOI: 10.4271/2018-01-0803
11. Yuki Yanase., Satoshi Kitayama., Satoshi Kitayama., Koetsu Yamazaki., Akiyoshi Matsuzaki. (2016). Simultaneous optimization of internal pressure profile and variable blank holder force trajectory in sheet hydro-forming. The Proceedings of Design & Systems Conference 2016.26:2305, DOI:10.1299/jsmedsd.2016.26.2305
12. Karabegović, E., Poljak, J. (2016). Experimental modeling of fluid pressure during hydro-forming of welded plates. Advances in Production Techniqe and Management, vol. 11, no. 4, 345–354, DOI:10.14743/APEM2016.4.232
13. Bharatkumar Modi., D. Ravi Kumar. (2013). Development of a hydro-forming setup for deep drawing of square cups with variable blank holding force technique. The International Journal of Advanced Manufacturing Technology; Heidelberg Vol. 66, Iss. 5-8, 1159-1169, DOI:10.1007/s00170-012-4397-4
14. Kitayama, Satoshi., Koyama, Hiroki., Kawamoto, Kiichiro., Miyasaka, Takuji., Yamamichi, Ken., Noda, Takuya. (2017). Optimization of blank shape and segmented variable blank holder force trajectories in deep drawing using sequential approximate optimization. The International Journal of Advanced Manufacturing Technology, vol. 91(5-8), 1809–1821, DOI:10.1007/s00170-016-9877-5
15. Rainer Krux., Werner Homberg., M. Kalveram., Michael Trompeter., Matthias Kleiner., Klaus Weinert. (2005). Die surface structures and hydrostatic pressure system for the material flow control in high-pressure sheet metal forming. Advanced Materials Research, volumes 6-8, 385–392, DOI:10.4028/www.scientific.net/AMR.6-8.385
16. Bharatkumar Modi., D. Ravi Kumar. (2019). Optimization of process parameters to enhance formability of AA 5182 alloy in deep drawing of square cups by hydro-forming. Journal of Mechanical Science and Technology, vol. 33, no. 11, 5337–5346, DOI:10.1007/s12206-019-1026-2
17. Schuler. (1998). Sheet metal forming and blanking. Metal Forming Handbook.; Springer: Verlag Berlin Heidelberg, Germany, p. 143–424.
18. Gale.W.F., Totemeier. T. C. (2004). Smithells Metals Reference Book-Butterworth-Heinemann, 8th ed.; Elsevier and The Materials Information Society: Oxford, United Kingdom, p. 1399-1457.
19. Neugebauer., Reimund. Prozessgestaltung. (2007). Hydo-umformung.; Springer: Verlag Berlin Heidelberg, Germany, p. 33-161.
20. Y.S Shin., H.Y Kim., B.H Jeon., S.I Oh. (2002). Prototype tryout and die design for automotive parts using welded blank hydro-forming. Journal of Materials Processing Technology, vol. 130, 121-127, DOI:10.1016/S0924-0136(02)00741-0
21. Douglas C. Montgomery. (2019). Response Surface Methods and Designs. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons: New Jersey, USA, p. 408-472.
22. Raymond H. Myers., Douglas C. Montgomery., Christine M. Anderson-Cook. (2016). Multiple Response Optimization. Response Surface Method: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: New Jersey, USA, p. 325-357.
23. Sagar M Baligidad., U Chandrasekhar., K Elangovan., S Shankar. (2018). RSM optimization of parameters influencing mechanical properties in selective inhibition sintering. Materials Today, vol. 5, no. 2, 4903–4910, DOI:10.1016/j.matpr.2017.12.067
24. Sagar M. Baligidad., U. Chandrasekhar., K. Elangovan., S. Shankar. (2019). Investigation of parameters influencing mechanical properties in SIS by using RSM. International Journal of Materials and Product Technology, vol. 58 (2/3), 178 – 200, DOI:10.1504/IJMPT.2019.097666
25. Statgraphics. Centurion. v15.1 software.
26. Nghe. P. V., Phuc. D. V.(2001). Key details of a hydraulic press. Hammer and hydraulic press.; Education Publishing House: Hanoi, Vietnam, p. 153-166.
27. Nghe. P. V., Phuc. D. V., Kien. L. V. (2011). Pulse and other stamping machines. Equipment for Metal Forming Technology – Crank press machine.; Science and Technics Publishing House: Hanoi, Vietnam, p. 209-228.