Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

NUMERICAL STRENGTH OPTIMIZATION OF STRUCTURAL DESign MADE OF DATE PALM FRONDS LEAVES WOOD PARTICLEBOARD


DOI: 10.5937/jaes0-35788 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 978 pages: 716-726

Rahman Ali Hussein
Middle Technical University, Technical Engineering College-Baghdad, 10001 Baghdad, Iraq

Mohammed Ali Nasser
Middle Technical University, Technical Engineering College-Baghdad, 10001 Baghdad, Iraq

Labed Kadhim Jawad
Middle Technical University, Technical Engineering College-Baghdad, 10001 Baghdad, Iraq

Mohanad Kadhim Mejbel*
Middle Technical University, Technical Engineering College-Baghdad, 10001 Baghdad, Iraq

Particleboard is a good substitute for costly wood/plywood boards. Particleboard can be developed from Date-Palm Leaves (DPL) as an annually renewable agro waste. DPL has a higher ultimate fiber length (1.25-2.50 mm) and higher α-cellulose content (about 60%) than hardwood/plywood and jute stick. In this present research, a numerical analysis focused on predicting the optimum strength for a selected chair style based on the mechanical strength behavior of the date palm leaves particleboard. This analysis is based on employing a chair model generated by Solidworks software and simulated by ANSYS software using the experimental mechanical properties of the selected material. Results show that the numerical analysis can predict a precise strength and safe behaviour for the selected chair shape and size according to the material properties without the manufacturing process taking part.

View article

This research is a self-funded project no funds has been paid by any source.

1. S. Suhaily, M. Jawaid, H. P. S. A. Khalil, A. R. Mohamed, and F. Ibrahim, “A review of oil palm biocomposites for furniture design and applications: potential and challenges,” BioResources, vol. 7, no. 3, pp. 4400–4423, 2012, doi: 10.15376/BIORES.7.3.4400-4423.

2. S. M. Alif, A. P. Nugroho, and B. E. Leksono, “Multipurpose cadastre for campus room appraisal,” J. Sci. Appl. Technol., vol. 3, no. 1, pp. 46–50, 2019, doi: https://doi.org/10.35472/jsat.v3i1.112.

3. A. Mustafa Ali LABIB, “Space-saving and multiple using furniture,” Int. J. Des. Fash. Stud., vol. 2, no. 1, pp. 18–21, 2019, doi: 10.21608/IJDFS.2019.180019.

4. R. Frischer et al., “Commercial ICT smart solutions for the elderly: State of the art and future challenges in the smart furniture sector,” Electronics, vol. 9, no. 1, p. 149, 2020, doi: https://doi.org/10.3390/electronics9010149.

5. D. Susanto and A. N. Ilmiani, “Flexible Furniture: A Design Strategy for Multiuse yet Limited Space in the Urban Kampung,” in 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC), 2018, pp. 26–31, doi: 10.1109/ICSGSC.2018.8541315.

6. H. A. Husein, “Multifunctional Furniture as a Smart Solution for Small Spaces for the Case of Zaniary Towers Apartments in Erbil City, Iraq,” Int. Trans. J. Eng. Manag. Appl. Sci. Technol, vol. 12, pp. 1–11, 2020, doi: 10.14456/ITJEMAST.2021.8.

7. H. Y. Cheng et al., “The Conceptualisation and Development of a Space-Saving Multipurpose Table for Enhanced Ergonomic Performance,” Inventions, vol. 6, no. 4, p. 67, 2021, doi: https://doi.org/10.3390/inventions6040067.

8. A. R. P. Rajan, D. Elavarasan, S. Balaji, A. Dinesh, and K. Gowtham, “Design and fabrication of multifunctional furniture,” Int. J. Res. Eng. Sci. Manag, vol. 2, pp. 442–447, 2019, [Online]. Available: https://www.ijresm.com/Vol.2_2019/Vol2_Iss5_May19/IJRESM_V2_I5_115.pdf.

9. M. Zaman, “Optimal value determination for a shape changeable furniture design parameters using full factorial design of experiment analysis,” Int. J. Res. Ind. Eng., vol. 10, no. 2, pp. 117–127, 2021, doi: 10.22105/RIEJ.2021.286958.1226.

10. M. H. Imam, A. S. Kamel, and M. Z. Al-Khatib, “Flexibility as a furnishing value in economical housing,” Int. Des. J., vol. 8, no. 3, pp. 269–276, 2018, doi: 10.21608/idj.2018.85493.

11. A. R. Baqer, A. A. Beddai, M. M. Farhan, B. A. Badday, and M. K. Mejbel, “Efficient coating of titanium composite electrodes with various metal oxides for electrochemical removal of ammonia,” Results Eng., vol. 9, p. 100199, 2021, doi: https://doi.org/10.1016/j.rineng.2020.100199.

12. S. J. Mezher, K. J. Kadhim, O. M. Abdulmunem, and M. K. Mejbel, “Microwave properties of Mg–Zn ferrite deposited by the thermal evaporation technique,” Vacuum, vol. 173, p. 109114, Mar. 2020, doi: 10.1016/j.vacuum.2019.109114.

13. T. H. A. Al-Saadi, S. H. Mohammad, E. G. Daway, and M. K. Mejbel, “Synthesis of intumescent materials by alkali activation of glass waste using intercalated graphite additions,” Mater. Today Proc., vol. 42, no. 5, pp. 1889–1900, 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.228.

14. S. J. Mezher, M. O. Dawood, O. M. Abdulmunem, and M. K. Mejbel, “Copper doped nickel oxide gas sensor,” Vacuum, vol. 172, p. 109074, Feb. 2020, doi: 10.1016/j.vacuum.2019.109074.

15. M. K. Allawi, M. H. Oudah, and M. K. Mejbel, “Analysis of Exhaust Manifold of Spark-Ignition Engine By Using Computational Fluid Dynamics (CFD),” J. Mech. Eng. Res. Dev., vol. 42, no. 5, pp. 211–215, 2019, doi: 10.26480/jmerd.05.2019.211.215.

16. H. Mikhlif, M. Dawood, O. Abdulmunem, and M. K. Mejbel, “Preparation of High-Performance Room Temperature ZnO Nanostructures Gas Sensor,” ACTA Phys. Pol. A, vol. 140, no. 4, pp. 320–326, 2021, doi: 10.12693/APhysPolA.140.320.

17. M. K. Allawi, M. K. Mejbel, Y. M. Younis, and S. J. Mezher, “A Simulation of the Effect of Iraqi Diesel Fuel Cetane Number on the Performance of a Compression Ignition Engine,” Int. Rev. Mech. Eng., vol. 14, no. 3, pp. 151–159, Mar. 2020, doi: 10.15866/ireme.v14i3.18137.

18. M. H. Oudah, M. K. Mejbel, and M. K. Allawi, “R134a Flow Boiling Heat Transfer (FBHT) Characteristics in a Refrigeration System,” J. Mech. Eng. Res. Dev., vol. 44, no. 4, pp. 69–83, 2021, [Online]. Available: https://jmerd.net/Paper/Vol.44,No.4(2021)/69-83.pdf.

19. M. K. Mejbel, M. K. Allawi, and M. H. Oudah, “Effects of WC, SiC, iron and glass fillers and their high percentage content on adhesive bond strength of an aluminium alloy butt joint: An experimental study,” J. Mech. Eng. Res. Dev., vol. 42, no. 5, pp. 224–231, 2019, doi: 10.26480/jmerd.05.2019.224.231.

20. M. Allawi, M. Mejbel, and M. Oudah, “Variable Valve Timing (VVT) Modelling by Lotus Engine Simulation Software,” Int. J. Automot. Mech. Eng., vol. 17, no. 4, pp. 8397 – 8410, Jan. 2021, doi: 10.15282/ijame.17.4.2020.15.0635.

21. M. K. Mejbel, H. R. Atwan, and I. T. Abdullah, “Void formation in friction stir welding of AA5052 butt joining,” J. Mech. Eng. Res. Dev., vol. 44, no. 5, pp. 318–332, 2021, [Online]. Available: https://jmerd.net/Paper/Vol.44,No.5(2021)/318-332.pdf.

22. M. K. Allawi, M. K. Mejbel, and M. H. Oudah, “Iraqi gasoline performance at low engine speeds,” IOP Conf. Ser. Mater. Sci. Eng., vol. 881, p. 12065, 2020, doi: 10.1088/1757-899x/881/1/012065.

23. S. J. Mezher, M. O. Dawood, A. A. Beddai, and M. K. Mejbel, “NiO nanostructure by RF sputtering for gas sensing applications,” Mater. Technol., vol. 35, no. 1, pp. 60–68, Jan. 2020, doi: 10.1080/10667857.2019.1653595.

24. A. M. K. M. K. Mejbel, M. M. Khalaf, and A. M. Kwad, “Improving the Machined Surface of AISI H11 Tool Steel in Milling Process,” J. Mech. Eng. Res. Dev., vol. 44, no. 4, pp. 58–68, 2021, [Online]. Available: https://jmerd.net/Paper/Vol.44,No.4(2021)/58-68.pdf.

25. W. J. Aziz, M. A. Abid, D. A. Kadhim, and M. K. Mejbel, “Synthesis of iron oxide (β-fe2o3) nanoparticles from Iraqi grapes extract and its biomedical application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 881, p. 12099, 2020, doi: 10.1088/1757-899x/881/1/012099.

26. T. H. Abood Al-Saadi, E. G. Daway, S. H. Mohammad, and M. K. Mejbel, “Effect of graphite additions on the intumescent behaviour of alkali-activated materials based on glass waste,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 14338–14349, 2020, doi: https://doi.org/10.1016/j.jmrt.2020.10.035.

27. A. Kasal, “Determination of the strength of various sofa frames with finite element analysis,” Gazi Univ. J. Sci., vol. 19, no. 4, pp. 191–203, 2006, [Online]. Available: https://hdl.handle.net/20.500.12809/5235.

28. A. Kasal, R. Birgul, and Y. Z. Erdil, “Determination of the strength performance of chair frames constructed of solid wood and wood composites.,” For. Prod. J., vol. 56, no. 7/8, pp. 55–60, 2006, [Online]. Available: https://hdl.handle.net/20.500.12809/5185.

29. M. Novotný, R. Neugebauer, and M. Šimek, “Static analysis of an office desk construction,” Acta Univ. Agric. Silvic. Mendelianae Brun., vol. 32, no. 6, pp. 247–254, 2011, doi: doi: 10.11118/actaun201159060247.

30. G. Cueff, J.-C. Mindeguia, V. Dréan, D. Breysse, and G. Auguin, “Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire,” Constr. Build. Mater., vol. 160, pp. 668–678, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2017.11.096.

31. C. Rößler, F. Breitenecker, and M. Riegler, “Simulating the Gluing of Wood Particles by Lattice Gas Cellular Automata and Random Walk,” Mathematics , vol. 8, no. 6. 2020, doi: 10.3390/math8060988.

32. M. Autengruber, M. Lukacevic, G. Wenighofer, R. Mauritz, and J. Füssl, “Finite-element-based concept to predict stiffness, strength, and failure of wood composite I-joist beams under various loads and climatic conditions,” Eng. Struct., vol. 245, p. 112908, 2021, doi: https://doi.org/10.1016/j.engstruct.2021.112908.

33. M. H. Çolakoğlu and A. C. Apay, “Finite element analysis of wooden chair strength in free drop,” Int. J. Phys. Sci., vol. 7, no. 7, pp. 1105–1114, 2012, doi: doi.org/10.5897/IJPS11.1229.

34. S. Nemes and M. Cionca, “Performance simulation of solid wood chairs.,” Pro Ligno, vol. 10, no. 1, pp. 47–53, 2014, [Online]. Available: http://www.proligno.ro/en/articles/2014/1/nemes_final.pdf.

35. M. Yildirim, B. Uysal, A. Ozcifci, H. Yorur, and S. Ozcan, “Finite element analysis (fatigue) of wooden furniture strength,” in Proceeding of 27th International Conference “Research for Furniture Industry”. Turkey, 2015, pp. 336–342, [Online]. Available: https://www.researchgate.net/publication/290096113_Finite_element_analysis_fatigue_of_wooden_furniture_strength.

36. L. Chevalier, F. Pled, F. Zambou, and E. Launay, “Cyclic virtual test on wood furniture by Monte Carlo simulation: from compression behavior to connection modeling,” Mech. Ind., vol. 20, no. 6, p. 606, 2019, doi: https://doi.org/10.1051/meca/2019039.

37. T. S. 2474, “Wood-determination of ultimate strength in static bending.” Institute of Turkish Standards Ankara, 1976.

38. E. N. ČSN, “527-3 (911105), 2005: Kancelářský nábytek–Pracovní stoly (Office Furniture–Working Tables) Část 3: Metody zkoušení pro stanovení stability a mechanické pevnosti konstrukce,” Český Norm. institut, Praha.

39. B. S. EN, “310: 1993 Wood-based panels. Determination of modulus of elasticity in bending and of bending strength,” Br. Stand. Institution, London, vol. 3, 1993.

40. S. Raghavendra and G. N. Lokesh, “Evaluation of mechanical properties in date palm fronds polymer composites,” in AIP Conference Proceedings, 2019, vol. 2057, no. 1, p. 20021, doi: https://doi.org/10.1063/1.5085592.

41. E. N. CEN, “312 Particleboards-Specifications,” Com. Eur. Norm. Brussels, Belgium, 2010.

42. A. A. Beddai, B. A. Badday, A. M. Al-Yaqoobi, M. K. Mejbel, Z. S. Al Hachim, and M. K. A. Mohammed, “Color Removal of Textile Wastewater Using Electrochemical Batch Recirculation Tubular Upflow Cell,” Int. J. Chem. Eng., vol. 2022, no. Article ID 4713399, p. 8, 2022, doi: 10.1155/2022/4713399.

43. M. K. M. Taha H. Abood AL-Saadi, Rana K. Abdulnabi, Muna N. Ismael, Hazim F. Hassan, “Glass Waste Based Geopolymers and Their Characteristics,” Rev. des Compos. des Matériaux Avancés, vol. 32, no. 1, pp. 17–23, 2022, doi: 10.18280/rcma.320103.

44. L. Kadhim Jawad, A. A. Beddai, M. Ali Nasser, and M. Kadhim Mejbel, “Scrutinizing the physical and strength properties of fabricated date palm frond leaves particleboard,” Mater. Today Proc., vol. 57, no. 2, pp. 980–988, 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.396.