Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

ORGANIC RANKINE CYCLE (ORC) SYSTEM IN RENEWABLE AND SUSTAINABLE ENERGY DEVELOPMENT: A REVIEW OF THE UTILIZATION AND CURRENT CONDITIONS FOR SMALL-SCALE APPLICATION


DOI: 10.5937/jaes0-36319 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 1001 pages: 957-970

Miftah Hijriawan
Graduate Program of Mechanical Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 Surakarta, Indonesia

Dwi Aries Himawanto
Graduate Program of Mechanical Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 Surakarta, Indonesia

Nugroho Agung Pambudi
Mechanical Engineering Education, Universitas Sebelas Maret, Jl. Ir. Sutami No.36 Surakarta, Indonesia

Zainal Arifin*
Graduate Program of Mechanical Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 Surakarta, Indonesia

The Organic Rankine Cycle (ORC) is a thermodynamic cycle that converts heat into mechanical energy to produce electrical power in a closed system using organic working fluids. It is also a heat recovery technology that can use heat at low temperatures and makes it a promising thermodynamic cycle with cost-effectiveness and more energy efficiency. However, the ORC system’s total efficiency is determined by the compatibility of the expander characteristics and working fluid properties with the system’s thermodynamic cycle parameters. This study aims to analyze using an integrative review method regarding the development of the ORC system as a heat recovery technology. The purpose of the integrative review method is to review the knowledge base, where the review is carried out critically and has the potential to conceptualize and expand the theoretical foundation developed. In this case, the first analysis is about the literature study on the parameters of the ORC system. Furthermore, the development and optimization of the ORC system are discussed further to analyze its capabilities in various applications. Work fluids, component optimizations, and system configurations have been reported for possible improvements. In addition, this ORC system can be used as a technology in developing various renewable energy sources, including solar, biomass, geothermal, and waste heat. Furthermore, this system is assessed for its environmental and economic benefits to developing its capabilities and potential. The results show that integrating the ORC system in various renewable energy sources can provide proper operation, better efficiency, and advantages such as increased power and reduced pollution.

View article

The Deputy for Research and Development Strengthening, Ministry of Research and Technology/National Research and Innovation Agency, has charged this research to the Budget Implementation List (DIPA) for the Fiscal Year 2021 with the title “Development of Passive Cooling Systems with Integration of Heat Sinks and Wind Concentrators to Improve Photovoltaic Performance-ground System” and Contract Number: 221.1/UN27.22/HK.07.00/2021.

1. Mahmoudi, A., Fazli, M., and M. Morad, R. (2018). A recent review of waste heat recovery by Organic Rankine Cycle. Applied Thermal Engineering, vol. 143, no. January, pp. 660–675, doi: 10.1016/j.applthermaleng.2018.07.136.

2. Wijianto, Sarjito, Subroto, and Himawanto, D. A. (2018). The effect of variation number of holes on burner cap of TLUD gasification stove. IOP Conference Series: Materials Science and Engineering, vol. 403, no. 1, doi: 10.1088/1757-899X/403/1/012097.

3. DeLovato, N., Sundarnath, K., Cvijovic, L., Kota, K., and Kuravi, S. (2019). A review of heat recovery applications for solar and geothermal power plants. Renewable and Sustainable Energy Reviews, vol. 114, no. August, p. 109329, doi: 10.1016/j.rser.2019.109329.

4. Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, vol. 4, no. 2, pp. 157–175, doi: 10.1016/S1364-0321(99)00011-8.

5. Chan, C. W., Ling-Chin ,J., and Roskilly ,A. P. (2013). A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilization. Applied Thermal Engineering, vol. 50, no. 1, pp. 1257–1273, doi: 10.1016/j.applthermaleng.2012.06.041.

6. Caceres, I. E., Agromayor, R., and Nord, L. O. (2011). Thermodynamic Optimization of an Organic Rankine Cycle for Power Generation from a Low Temperature Geothermal Heat Source. Proceedings of the 58th SIMS September 25th - 27th, Reykjavik, Iceland, pp. 251–262, doi: 10.3384/ecp17138251.

7. Cengel, Y. A. and Boles, M. A.. (2015). Thermodynamics An Engineering Approach, 8th ed. New York: McGraw-Hill Education.

8. Blanquart, F. (2017). Perspectives for Power Generation from Industrial Waste Heat Recovery. KTH School of Industrial Engineering and Management.

9. Zhang, X., He, M., and Zhang, Y. (2012). A review of research on the Kalina cycle. Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 5309–5318, doi: 10.1016/j.rser.2012.05.040.

10. Tocci, L., Pal, T., Pesmazoglou, I., and Franchetti, B. (2017). Small Scale Organic Rankine Cycle ( ORC ): A Techno-Economic Review. Energies, MDPI, pp. 1–26, doi: 10.3390/en10040413.

11. Shi, L., Shu, G., Tian, H., and Deng, S. (2018). A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renewable and Sustainable Energy Reviews, vol. 92, no. November 2017, pp. 95–110, doi: 10.1016/j.rser.2018.04.023.

12. Tartière, T. and Astolfi, M. (2017). A World Overview of the Organic Rankine Cycle Market The Overview the Organic Rankine Assessing the feasibility of the heat. Energy Procedia, vol. 129, pp. 2–9, doi: 10.1016/j.egypro.2017.09.159.

13. Rahbar, K., Mahmoud, S., Al-Dadah, R. K., Moazami, N., and Mirhadizadeh, S. A. (2017). Review of organic Rankine cycle for small-scale applications. Energy Conversion and Management, vol. 134, pp. 135–155, doi: 10.1016/j.enconman.2016.12.023.

14. Lecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., and De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews, vol. 47, pp. 448–461, doi: 10.1016/j.rser.2015.03.089.

15. Pereira, J. S., Ribeiro, J. B., Mendes, R., Vaz, G. C., and André, J. C. (2018). ORC based micro-cogeneration systems for residential application - A state of the art review and current challenges. Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 728–743, doi: 10.1016/j.rser.2018.04.039.

16. Hijriawan, M., et al. (2019). Organic Rankine Cycle (ORC) in geothermal power plants. Journal of Physics: Conference Series, vol. 1402, no. 4, doi: 10.1088/1742-6596/1402/4/044064.

17. Clemente, S., Micheli, D., Reini, M., and Taccani, R. (2012). Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications. Applied Energy, vol. 97, pp. 792–801, doi: 10.1016/j.apenergy.2012.01.029.

18. Drozdz, M. (2003). An optimization model of geothermal-energy conversion. Applied Energy, vol. 74, no. 1–2, pp. 75–84, doi: 10.1016/s0306-2619(02)00133-2.

19. Macchi, E. (2017). Theoretical basis of the Organic Rankine Cycle. Elsevier Ltd., doi: 10.1016/B978-0-08-100510-1.00001-6.

20. White, M. T., Oyewunmi, O. A., Chatzopoulou, M. A., Pantaleo, A. M., Haslam, A. J., and Markides, C. N. (2018) Computer-aided working- fluid design , thermodynamic optimization and thermoeconomic assessment of ORC systems for waste-heat recovery. Energy, vol. 161, pp. 1181–1198, doi: 10.1016/j.energy.2018.07.098.

21. Lukawski, M. (2009). Design and Optimization of Standardized Organic Rankine Cycle Power Plant for European Conditions. Akuyreyri: RES: The School for Renewable Energy Science.

22. Xi, H., Li, M., Zhang, H., and He, Y. (2019) Experimental studies of organic Rankine cycle systems using scroll expanders with different suction volumes. Journal of Cleaner Production, vol. 218, pp. 241–249, doi: 10.1016/j.jclepro.2019.01.302.

23. Nemati, A., Nami, H., Ranjbar, F., and Yari, M. (2016). A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery : A case study for CGAM cogeneration system,” Case Stud. Therm. Eng., vol. 9, no. September pp. 1–13, 2017, doi: 10.1016/j.csite.2016.11.003.

24. Johnson, I., Choate, W. T., and Davidson, A. (2008). Waste Heat Recovery: Technology and Opportunities in U.S. Industry. United State.: BCS Inc., Laurel, MD. doi: 10.2172/1218716.

25. Spadacini, C., Xodo, L. G., and Quaia, M., (2017) Geothermal energy exploitation with Organic Rankine Cycle technologies. in Organic Rankine Cycle (ORC) Power Systems, Italy: Elsevier Ltd, pp. 473–525. doi: 10.1016/B978-0-08-100510-1.00014-4.

26. Astolfi, M., Romano, M. C., Bombarda, P., and Macchi, E. (2014.) Binary ORC (organic Rankine cycles) power plants for the exploitation of medium e low temperature geothermal sources e Part A : Thermodynamic optimization. Energy, vol. 66, pp. 423–434, doi: 10.1016/j.energy.2013.11.056.

27. Astolfi, M., M. Romano, C., Bombarda, P., and Macchi, E. (2014). Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium e low temperature geothermal sources e Part B : Techno-economic optimization. Energy, vol. 66, pp. 435–446, doi: 10.1016/j.energy.2013.11.057.

28. Bao, J. and Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, vol. 24, pp. 325–342, doi: 10.1016/j.rser.2013.03.040.

29. Zhou, F., Joshi, S. N., Rhote-Vaney, R., and Dede, E. M. (2017). A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery. Renewable and Sustainable Energy Reviews, vol. 75, no. January 2016, pp. 1008–1021, doi: 10.1016/j.rser.2016.11.080.

30. Macchi, E. and Perdichizzi, A. (1981). Efficiency Prediction for Axial-Flow Turbines Operating With Nonconventional Fluids. American Society of Mechanical Engineers, vol. 103, no. 81-GT-15, pp. 5–11, 1981.

31. Invernizzi, C., Iora, P., and Silva, P. (2007). Bottoming micro-Rankine cycles for micro-gas turbines., vol. 27, no. 1, pp. 100–110, doi: 10.1016/j.applthermaleng.2006.05.003.

32. Stijepovic, M. Z., Linke, P., Papadopoulos, A. I., and Grujic, A. S. (2012). On the role of working fluid properties in Organic Rankine Cycle performance. Applied Thermal Engineering, vol. 36, no. 1, pp. 406–413, doi: 10.1016/j.applthermaleng.2011.10.057.

33. Desideri, A., Gusev, S., Van Den Broek, M., and Lemort, V. (2016). Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications. Energy, vol. 97, pp. 460–469, doi: 10.1016/j.energy.2015.12.012.

34. Fu, B. R., Lee, Y. R., and Hsieh, J. C. (2016). Experimental investigation of a 250-kW turbine organic Rankine cycle system for low-grade waste heat recovery. International Journal of Green Energy, vol. 13, no. 14, pp. 1442–1450, doi: 10.1080/15435075.2016.1212353.

35. Qiu, G., Liu, H., and Riffat, S. (2011). Expanders for micro-CHP systems with organic Rankine cycle. Applied Thermal Engineering, vol. 31, no. 16, pp. 3301–3307, doi: 10.1016/j.applthermaleng.2011.06.008.

36. Alshammari, F., Usman, M., and Pesyridis, A. (2018). Expanders for Organic Rankine Cycle Technology. IntehcOpen, no. November, pp. 41–59, doi: 10.5772/intechopen.78720.

37. Dutta, S. P. and Borah, R. C. (2018). Design of a Solar Organic Rankine Cycle Prototype for 1 kW Power Output. International Journal of Engineering Trends and Technology (IJETT), vol. 62, no. 1, pp. 23–33.

38. Imran, M., Usman, M., Park, B., and Lee, D. (2016). Volumetric expanders for low grade heat and waste heat recovery applications. Renewable and Sustainable Energy Reviews, vol. 57, pp. 1090–1109, doi: 10.1016/j.rser.2015.12.139.

39. Lemort, S., Guillaume, V., Legros, L., Declaye, A., Quiilin, S. (2013). A Comparison of Piston, Screw and Scroll Expanders for Small-Scale Rankine Cycle Systems. The 3rd International Conference on Microgeneration and Related Technologies.

40. Weiß, A. P. (2015). Volumetric Expander vs. Turbine - Which is the better choice for small ORCC Plants?. in 3rd International Seminar on ORC Power Systems, vol. 1, no. October 2015, pp. 1–36. doi: 10.1017/CBO9781107415324.004.

41. Badr, O., Probert, D., and O’callaghan, P. W. (1986). Multi-Vane Expanders as Prime Movers in Low-Grade Energy Engines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 200, no. 2, pp. 117–125, doi: 10.1243/PIME_PROC_1986_200_017_02.

42. Kim, H. J., Ahn, J. M., Park, I., and Rha, P. C. (2007). Scroll expander for power generation from low-grade steam source. Journal of Power and Energy, vol. 221, p. 705, doi: 10.1243/09576509JPE392.

43. Wang, D., Ling, X., Peng, H., Liu, L., and Tao, L. (2013). Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy, vol. 50, pp. 343–352, doi: 10.1016/j.energy.2012.11.010.

44. Zhou, N., Wang, X., Chen, Z., and Wang, Z., (2013). Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature fl ue gas. Energy, vol. 55, pp. 216–225, doi: 10.1016/j.energy.2013.03.047.

45. Song, P., Wei, M., Shi, L., Danish, S. N., and Ma, C. (2015). A review of scroll expanders for organic rankine cycle systems. Applied Thermal Engineering, vol. 75, pp. 54–64, doi: 10.1016/j.applthermaleng.2014.05.094.

46. Emhardt, S., Tian, G., and Chew, J. (2018). A review of scroll expander geometries and their performance. Applied Thermal Engineering, vol. 141, no. June, pp. 1020–1034, doi: 10.1016/j.applthermaleng.2018.06.045.

47. Landelle, A., Tauveron, N., Revellin, R., Haberschill, P., and Colasson, S. (2017). Experimental Investigation of a Transcritical Organic Rankine Cycle with Scroll Expander for Low - Temperature Waste Heat Recovery. Energy Procedia, vol. 129, pp. 810–817, doi: 10.1016/j.egypro.2017.09.142.

48. Eryanto, G. et al. (2020). Analysis of organic Rankine cycle based on thermal and exergy efficiency. Journal of Physics: Conference Series, vol. 1595, no. 1. doi: 10.1088/1742-6596/1595/1/012018.

49. Tchanche, B. F., Pétrissans, M., and Papadakis, G. (2014). Heat resources and organic Rankine cycle machines. Renewable and Sustainable Energy Reviews, vol. 39, pp. 1185–1199, doi: 10.1016/j.rser.2014.07.139.

50. Iglesias, S. G., Ferreiro, R. G., Carbia, J. C., and Iglesias, D. G. (2018). A review of thermodynamic cycles used in low temperature recovery systems over the last two years. Renewable and Sustainable Energy Reviews, vol. 81, no. August 2017, pp. 760–767, doi: 10.1016/j.rser.2017.08.049.

51. Li, G. (2016). Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part II: Economic assessment aspect. Renewable and Sustainable Energy Reviews, vol. 64, pp. 490–505, doi: 10.1016/j.rser.2016.06.036.

52. Hijriawan, M., Pambudi, N. A., Wijayahnto, D. S., Biddinika, M. K., and Saw, B. L. H. (2021). Experimental analysis of R134a working fluid on Organic Rankine Cycle (ORC) systems with scroll-expander. Engineering Science and Technology, an International Journal, no. xxxx, doi: 10.1016/j.jestch.2021.06.016.

53. Zhai, H., An, Q., Shi, L., Lemort, V., and Quoilin, S. (2016). Categorization and analysis of heat sources for organic Rankine cycle systems. Renewable and Sustainable Energy Reviews, vol. 64, pp. 790–805, doi: 10.1016/j.rser.2016.06.076.

54. Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., and Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4175–4189, doi: 10.1016/j.rser.2012.03.022.

55. Modi, A., Bühler, F., Andreasen, J. G., and ,Haglind F. (2017). A review of solar energy based heat and power generation systems. Renewable and Sustainable Energy Reviews, vol. 67, pp. 1047–1064, doi: 10.1016/j.rser.2016.09.075.

56. Aboelwafa, O., Fateen, S. E. K., Soliman, A., and Ismail, I. M. (2018). A review on solar Rankine cycles: Working fluids, applications, and cycle modifications. Renewable and Sustainable Energy Reviews, vol. 82, no. May 2017, pp. 868–885, doi: 10.1016/j.rser.2017.09.097.

57. Delgado-Torres, A. M. and García-Rodríguez, L. (2012). Design recommendations for solar organic Rankine cycle (ORC)-powered reverse osmosis (RO) desalination. Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 44–53, doi: 10.1016/j.rser.2011.07.135.

58. Eyidogan, M., Canka, F. K., Kaya, D., Coban, V., and Cagman, S. (2016). Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view. Renewable and Sustainable Energy Reviews, vol. 58, pp. 885–895, doi: 10.1016/j.rser.2015.12.158.

59. Obernberger, I., Thonhofer, P., and Reisenhofer, E. (2002). Description and evaluation of the new 1,000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat & Power, vol. 10, pp. 1–17, [Online]. Available: http://www.turboden.eu/en/public/downloads/report_on_lienz_plant.pdf

60. Tchanche, B. F., Lambrinos, G., Frangoudakis, A., and Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles - A review of various applications. Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3963–3979, doi: 10.1016/j.rser.2011.07.024.

61. Pambudi, N. A. (2018). Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renew. Sustain. Energy Rev., vol. 81, no. July 2017, pp. 2893–2901, doi: 10.1016/j.rser.2017.06.096.

62. Pambudi, N. A., Itoi, R., Jalilinasrabady, S., and ,Jaelani K. (2014). Exergy analysis and optimization of Dieng single-flash geothermal power plant. Energy Conversion and Management, vol. 78, pp. 405–411, doi: 10.1016/j.enconman.2013.10.073.

63. Rudiyanto, B., Aries, M., Pambudi, N. A., Widjonarko, W., and Hijriawan, M. (2021). An update of second law analysis and optimization of a single-flash geothermal power plant in Dieng, Indonesia. Geothermics, vol. 96, no. March, p. 102212, doi: 10.1016/j.geothermics.2021.102212.

64. Pasek, A. D., Soelaiman, T. A. F., and Gunawan, C. Thermodynamics study of flash–binary cycle in geothermal power plant. Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 5218–5223, 2011, doi: 10.1016/j.rser.2011.05.019.

65. Li, K., Liu, C., Jiang, S., and Chen, Y. (2020). Review on hybrid geothermal and solar power systems. Journal of Cleaner Production, vol. 250, doi: 10.1016/j.jclepro.2019.119481.

66. Reddy, C. C. S., Naidu, S. V, and Rangaiah, G. P. (2013). Waste Heat Recovery Methods and Technologies. Chemical Engineering.

67. Changshun, Z., Gang, X. U., and Tong, L. I. U. (2013). Thermodynamic analysis of the integrated waste heat recovery system for power plant. Advanced Material Research, vol. 817, pp. 698–701, doi: 10.4028/www.scientific.net/AMR.816-817.698.

68. Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., and Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, vol. 6, no. January, pp. 268–289, doi: 10.1016/j.tsep.2018.04.017.

69. Saghafifar, M., Omar, A., Mohammadi, K., Alashkar, A., and Gadalla, M. (2019). A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization. Energy Conversion and Management, vol. 198, no. June 2018, p. 110905, doi: 10.1016/j.enconman.2018.10.047.

70. Rielly, K. O. and Jeswiet, J. (2015). Improving Industrial Energy Efficiency through the Implementation of Waste Heat Recovery Systems. Transactions of the Canadian Society for Mechanical Engineering, vol. 39, no. 1, pp. 125–136.

71. Costiuc, I., Costiuc, L., and Radu, S. (2015). Waste Heat Recovery using Dirrect Thermodynamic cycle. Bulletin of The Transilvania University of Brasov, Series I: Engineering Sciences, vol. 8, no. 2, pp. 1–6.

72. MAN. (2014). Waste Heat Recovery System (WHRS) for Reduction of Fuel Consumption, Emissions and EEDI. MAN Diesel Turbo, pp. 1–6.

73. Zhai, H., Shi, L., and An, Q. (2014). Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system. Energy, vol. 74, no. C, pp. 2–11, doi: 10.1016/j.energy.2013.12.030.

74. Feng, Y. Q., et al. (2020). Parametric analysis and thermo-economical optimization of a Supercritical-Subcritical organic Rankine cycle for waste heat utilization. Energy Conversion and Management, vol. 212, no. March, p. 112773, doi: 10.1016/j.enconman.2020.112773.

75. Ochoa, G. V., Chamorro, M. V., and Silvera, O. C. (2022). Thermo-economic and sustainability assessment of two solar organic Rankine cycles in the United States. Sustainable Energy Technologies and Assessments, vol. 50, no. August 2021, p. 101758, doi: 10.1016/j.seta.2021.101758.

76. Qiu, G. (2012). Selection of working fluids for micro-CHP systems with ORC,” Renewable Energy, vol. 48, pp. 565–570, doi: 10.1016/j.renene.2012.06.006.

77. Kumar, A. and Rakshit, D. (2021). A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications. Cleaner Engineering and Technology, vol. 5, p. 100292, doi: 10.1016/j.clet.2021.100292.