Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

COMBINED PIPRECIA METHOD AND MODIFIED FUCA METHOD FOR SELECTION OF LATHE


DOI: 10.5937/jaes0-39335 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 1040 pages: 1355-1365

Do Duc Trung*
Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi city, Vietnam

Nguyen Xuan Truong
Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi city, Vietnam

Hoang Xuan Thinh
Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi city, Vietnam

The choice of technological equipment in general or lathe in particular has a great influence on the efficiency of the machining processes. Lathes are often evaluated by many criteria, both quantitative and qualitative. Sometimes the criteria employed by the methods are opposite to each other. Hence the choice of lathe is usually made through the evaluation of multiple criteria, which is known as “Multi-Criteria Decision Making – MCDM”. In the research was used PIPRECIA method to determine the weights of the criteria. Modifications to FUCA method were then implemented. The combination of PIPRECIA method and the modified FUCA method were applied to the lathe selection in two cases. In both cases the best and worst alternatives were determined in the same way as when using the CURLI method. This confirms the correct implementation of the FUCA method modification, and the combination of PIPRECIA and the modified FUCA method turns out to be a right approach in the selection of lathes. Details that need to be considered in future research were also mentioned in this study.

View article

1.      Trung, D. D. (2021). Application of TOPSIS an PIV Methods for Multi - Criteria Decision Making in Hard Turning Process. Journal of Machine Engineering, vol. 21, no. 4, 57–71, DOI: 10.36897/jme/142599

2.      Nguyen, N. T., Trung, D. D. (2021). Development of surface roughness model in turning process of 3X13 steel using TiAlN coated carbide insert. EUREKA: Physics and Engineering, vol. 2021, no. 4, 113-124, DOI: 10.21303/2461-4262.2021.001937

3.      Moon, C., Lee, M., Seo, Y., Lee, Y. H. (2002). Integrated machine tool selection and operation sequencing with capacity and precedence constraints using genetic algorithm. Computers & Industrial Engineering, vol. 43, 605-621, DOI: 10.1016/S0360-8352(02)00129-8

4.      Tan, C.F., Khalil, S.N., Karjanto, J.,  Wahidin, L.S., Chen, W., Rauterberg, G.W.M. (2015). An Expert Machine Tools Selection System for Turning Operation. 7th International Conference on Cooling & Heating Technologies. IOP Conf. Series: Materials Science and Engineering, vol. 88, no. 012044, 1-7, DOI: 10.1088/1757-899X/88/1/012044

5.      Athawale, V. M., Chakraborty, S. (2010). A TOPSIS Method-based Approach to Machine Tool Selection. Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, 65-70.

6.      Yazdani, M., Zarate, P., Zavadskas, E. K., Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, vol. 57, no. 9, 2501-2519, DOI: 10.1108/MD-05-2017-0458

7.      Trung, D. D. (2022). Expanding Data Normalization Method to CODAS Method for Multi-Criteria Decision Making. Applied Engineering Letters, vol. 7, no. 2, 54-66, DOI: 10.18485/aeletters.2022.7.2.2

8.      Nguyen, H. Q., Le X. H., Nguyen, T. T., Tran, Q. H., Vu, N. P. (2022). A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding. Machines, vol. 10, no. 5, 1-14, DOI: 10.3390/machines10050303

9.      Nai, P. A., Patil, S., Raut, D. N. (2021). Assessment of CNC Machine Tools using

10.   MCDM Techniques. Journal of Xi'an University of Architecture & Technology, vol. 13, no. 6, 572-583.

11.   Lata, S., Sachdeva, A. K., Paswan, M. K. (2021). Selection of Machine Tool by Using FUZZY TOPSIS Method. AIP Conference Proceedings, vol. 2341, no. 020015, 1-15, DOI: 10.1063/5.0053536

12.   Yusuf, S., Erdal, A. (2022). A Comprehensive Solution Approach for CNC Machine Tool Selection Problem. Informatica, vol. 33, no. 1, 81-108, DOI: 10.15388/21-INFOR461

13.   Gupta, V., Kuma, B., Manda, U. K. (2016). CNC Machine tool selection using MCDM techniques and application of software SANNA. International Journal of Engineering Trends and Technology, vol. 35, no. 7, 323-334, DOI: 10.14445/22315381/IJETT-V35P267

14.   Arzum, O., Tuzkaya, G., Tuzkaya, U. R., Ozgen, D. (2011). A Multi-Criteria Decision Making Approach for Machine Tool Selection Problem in a Fuzzy Environment. International Journal of Computational Intelligence Systems, vol. 4, no. 4, 431-445, DOI: 10.1080/18756891.2011.9727802

15.   Li, H., Wang, W., Fan, L., Li, Q., Chen, X. (2020). A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Applied Soft Computing Journal, vol. 91, no. 106207, 1-14, DOI: 10.1016/j.asoc.2020.106207

16.   Ayag, Z., Ozdemir, R. G. (2012). Evaluating machine tool alternatives through modified TOPSIS and alpha-cut based fuzzy ANP. International Journal of Production Economics, vol. 140, 630-636, DOI: 10.1016/j.ijpe.2012.02.009

17.   Onut, S., Kara, S. S., Efendıgıl, T. (2008). A hybrid fuzzy MCDM approach to machine tool selection. Journal of Intelligent Manufacturing, vol. 19, 443-453, DOI: 10.1007/s10845-008-0095-3

18.   Saaty, T. L., Vargas, L.G. (2012). The seven pillars of the analytic hierarchy process, Models, methods, concepts and applications of the analytic hierarchy process. Springer, New York, 27–46, DOI: 10.1007/978-1-4614-3597-6

19.   Li, F., Phoon, K.K., Du, X., Zhang, M. (2013). Improved AHP method and its application in risk identification. Journal of Construction Engineering and Management, vol. 139, no. 3, 312–320, DOI: 10.1061/(ASCE)CO.1943-7862.0000605

20.   Sangiorgio, V., Uva, G., Fatiguso, F. (2018). Optimized AHP to Overcome Limits in Weight Calculation: Building Performance Application. Journal of Construction Engineering and Management, vol. 144, no. 2, 1-14.

21.   Dragisa, S. , Kazimieras, Z. E., Darjan, K., Florentin, S., Zenonas, T. (2017). The use of the PIvot Pairwise RElative Criteria Importance Assessment method for determining the weights of criteria. Romanian Journal of Economic Forecasting, vol. 20, no. 4, 116-133.

22.   Dragisa, S., Darjan, K., Gabrijela, P. (2021). Ranking alternatives using PIPRECIA method: A case of hotels' website evaluation. Journal of Process Management and New Technologies, vol. 9, no. 3-4, 62-68, DOI: 10.5937/jouproman2103062S

23.   Puska, A., Beganovic, A., Stojanovic, I., Murtic, S. (2022). Green supplier’s selection using economic and environmental criteria in medical industry. Environment, Development and Sustainability, vol. 2022, 1-22, DOI: 10.1007/s10668-022-02544-8

24.   Jocic, K. J., Karabasevic, D., Jocic, G. (2020). The use of the PIPRECIA method for assessing the quality of e-learning materials. Ekonomika, vol. 66, no. 3, 37-45, DOI: 10.5937/ekonomika2003037J

25.   Darjan, K., Gabrijela, P., Dragisa, S., Mladja, M., Cipriana, S. (2019).  An approach for hotel type selection based on the Single-Valued Intuitionistic Fuzzy Numbers. International Review, vol. 2019, no. 1-2, 7-14.

26.   Ulutas, A., Popovic, G., Stanujkic, D., Karabasevic, D., Zavadskas, E. K., Turskis, Z. (2020). A New Hybrid MCDM Model for Personnel Selection Based on a Novel Grey PIPRECIA and Grey OCRA Methods.  Mathematics. vol. 8, no. 10, 1-14, DOI: 10.3390/math8101698

27.   Irena, D., Ateljevic, J., Stevic, Z., Terzic, S. (2020). An integrated SWOT – Fuzzy PIPRECIA model for analysis of competitiveness in order to improve logistics performances. Facta universitatis - Mechanical Engineering, vol. 18, no. 3, 439 – 451, DOI: 10.22190/FUME200325029D

28.   Stanujkic, D., Karabasevic, D., Popovic, G., Stanimirovic, P. S., Saracevic, M., Smarandache,  F., Katsikis, V. N., Ulutas, A. (2021). A New Grey Approach for Using SWARA and PIPRECIA

29.   Methods in a Group Decision-Making Environment. Mathematics, vol. 9, no. 13, 1-16, DOI: 10.3390/math9131554

30.   M. M. L.,  Escobedo, J. L. P., Azzaro-Pantel, C., Pibouleau, L., Domenech, S., Aguilar-Lasserre, A. (2011).  Selecting the best alternative based on a hybrid multiobjective GA-MCDM approach for new product development in the pharmaceutical industry. IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM), DOI: 10.1109/SMDCM.2011.5949271

31.   Baydas, M. (2022). The effect of pandemic conditions on financial success rankings of BIST SME industrial companies: a different evaluation with the help of comparison of special capabilities of MOORA, MABAC and FUCA methods. Business & Management Studies: An International Journal, vol. 10, no. 1, 245-260, DOI: 10.15295/bmij.v10i1.1997

32.   Baydas, M. (2022). Comparison of the Performances of MCDM Methods under Uncertainty: An Analysis on Bist SME Industry Index. OPUS – Journal of Society Research, vol. 19, no. 46, 308-326, DOI: 10.26466//opusjsr.1064280

33.   Ouattara, A., Pibouleau, L., Azzaro-Pantel, C.,  Domenech, S.,  Baudet, P., Yao, B. (2012). Economic and environmental strategies for process design. Computers & Chemical Engineering, vol. 36, no. 10, 174-188, DOI: 10.1016/j.compchemeng.2011.09.016

34.   Baydas, M., Pamucar, D. (2022). Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data. Mathematics, vol. 10, no. 7, 1-25, DOI: 10.3390/math10071115

35.   Baydas, M.,  Elma, O. E., Pamucar, D. (2022). Exploring the specific capacity of different multi criteria decision making approaches under uncertainty using data from financial markets. Expert Systems with Applications, vol. 197, DOI: 10.1016/j.eswa.2022.116755

36.   https://machine.hyundai-wia.com/en/ (accessed: 12/6/2022)

37.   James, R. K., David, J. A. (2016). A new method for group decision making and its application in medical trainee selection. Medical Education, vol. 50, no. 10, 1045–1053, DOI: 10.1111/medu.13112

38.   Trung, D. D. (2022). Multi-criteria decision making of turning operation based on PEG, PSI and CURLI methods. Manufacturing review, vol. 9, no. 9, 1-12, DOI: 10.1051/mfreview/2022007

39. Trung, D. D. (2022). Comprasion R and CURLI methods for multi-criteria decision making. Advanced Engineering Letters, vol. 1, no. 2, 46-56, DOI: 10.46793/adeletters.2022.1.2.3