DOI: 10.5937/jaes0-38857
This is an open access article distributed under the CC BY 4.0
Volume 24 article 1054 pages: 94-107
This paper aims to investigate cutting and lubrication parameters on surface roughness, cutting force, and material removal rate in face milling of JIS S50C carbon steel under a peanut oil-assisted Minimum Quantity Lubricant system. The five 3-level cutting process parameters were considered variants, including cutting speed, feed rate, depth of cut, air pressure, and lubrication flow. The experimental design was based on Taguchi's orthogonal array L27. The Analysis of variance is used to analyze the effect of cutting parameters and lubrication conditions on the surface roughness and cutting force. In addition, both regression optimizer procedures based on regression models and the Multi-Criteria Decision Making method were successfully applied to find the optimum conditions of the cutting parameter. The results showed the advantage and disadvantages of each technique. The Multi-Objective Optimization by Ratio Analysis was used in finding the best alternative. However, these values may not be an optimum condition. Mathematically, a regression optimizer may better determine the optimal value.
This work was funded by the Ministry of Education & Training Vietnam (grant number B2021-BKA-11)
1. J. Singh and S. Singh Chatha. (2020). Tribological behaviour of nanofluids under minimum quantity lubrication in turning of AISI 1055 steel, Mater. Today Proc., vol. 41, pp. 825–832, doi: https://doi.org/10.1016/j.matpr.2020.09.156.
2. N. T. Duong, H. T. Dung, N. Van Canh, D. N. Hoanh, D. M. Hien, and V. T. Nguyen. (2021). Prediction and optimization of surface roughness in grinding of s50c carbon steel using minimum quantity lubrication of vietnamese peanut oil.J. Appl. Eng. Sci., vol. 19, no. 3, pp. 814–821, doi: 10.5937/jaes0-30580.
3. Race et al. (2021). Environmentally sustainable cooling strategies in milling of SA516: Effects on surface integrity of dry, flood and MQL machining. J. Clean. Prod., vol. 288, p. 125580, doi: https://doi.org/10.1016/j.jclepro.2020.125580.
4. R. B. Da Silva et al. (2011). Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, vol. 271, no. 9, pp. 2459–2465, doi: https://doi.org/10.1016/j.wear.2010.12.046.
5. M. Rana et al. (2021). Multi response optimization of nozzle process parameters in MQL assisted face milling of AISI 52,100 alloy steel using TGRA. Mater. Today Proc., vol. 44, pp. 3177–3182, doi: https://doi.org/10.1016/j.matpr.2021.02.830.
6. L. W. et al HERNANDEZ-GONZALEZ. (2018). Effects of cutting parameters on surface roughness and hardness in milling of AISI 304 steel. DYNA, vol. 85, pp. 57–63, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532018000200057&nrm=iso
7. G. Singh, M. K. Gupta, M. Mia, and V. S. Sharma. (2018). Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int. J. Adv. Manuf. Technol., vol. 97, no. 1, pp. 481–494, doi: 10.1007/s00170-018-1911-3.
8. K. K. Gajrani. (2020). Assessment of cryo-MQL environment for machining of Ti-6Al-4V. J. Manuf. Process., vol. 60, pp. 494–502, doi: https://doi.org/10.1016/j.jmapro.2020.10.038.
9. Pal, S. S. Chatha, and H. S. Sidhu. (2020). Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid.Tribol. Int., vol. 151, p. 106508, doi: 10.1016/j.triboint.2020.106508.
10. N. R. Dhar, M. Kamruzzaman, and M. Ahmed (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J. Mater. Process. Technol., vol. 172, no. 2, pp. 299–304, doi: https://doi.org/10.1016/j.jmatprotec.2005.09.022.
11. S. U. G. Mr, “A Bibliometric Analysis of Minimum Quantity Lubrication as A Sustainable Approach,” Libr. Philos. Pract., [Online]. Available: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=8929&context=libphilprac
12. S. Awale, M. Vashista, and M. Z. Khan Yusufzai. (2020). Multi-objective optimization of MQL mist parameters for eco-friendly grinding,” J. Manuf. Process., vol. 56, pp. 75–86, doi: https://doi.org/10.1016/j.jmapro.2020.04.069.
13. S. K. Tamang, M. Chandrasekaran, and A. K. Sahoo. (2018). Sustainable machining: an experimental investigation and optimization of machining Inconel 825 with dry and MQL approach. J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 8, p. 374, 2018, doi: 10.1007/s40430-018-1294-2.
14. V. Upadhyay, P. K. Jain, and N. K. Mehta. (2013). Machining with minimum quantity lubrication: A step towards green manufacturing. Int. J. Mach. Mach. Mater., vol. 13, no. 4, pp. 349–371, doi: 10.1504/IJMMM.2013.054277.
15. T. D. H. Van Canh Nguyen, Thuy Duong Nguyen. (2021). Cutting Parameter Optimization in Finishing Milling of Ti-6Al-4V Titanium Alloy under MQL Condition using TOPSIS and ANOVA Analysis. Eng. Technol. & Appl. Sci. Res., vol. 11, no. 1, pp. 6775–6780, doi: https://doi.org/10.48084/etasr.4015.
16. V. C. Nguyen, B. N. Nguyen, D. H. Tien, V. Q. Nguyen, X. T. Nguyen, and T. D. Nguyen. (2022). Using Support Vector Regression and Non-Dominated Sorting Genetic Algorithm in Multi-Objective Optimization of Milling of S50C Steel Under Mql Condition. J. Appl. Eng. Sci., vol. 20, no. 1, pp. 123–130, doi: 10.5937/jaes0-31366.
17. V. Nguyen, T. Hoang, V. Pham, and T. Nguyen. (2021). Investigation and Optimization of Surface Roughness and Material Removal Rate in Face Finishing Milling of Ti-6Al-4V under MQL Condition, no. December, pp. 10–16.
18. L. M. Diamante and T. Lan. (2014). Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1. J. Food Process., p. 234583, 2014, doi: 10.1155/2014/234583.
19. H. Zhang, J. P. Choi, S. K. Moon, and T. H. Ngo. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Addit. Manuf., vol. 33, no. December 2019, p. 101096, doi: 10.1016/j.addma.2020.101096.