Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

APPLICATION OF INDUSTRY 4.0 TECHNOLOGIES IN HOME DELIVERY: A REVIEW


DOI: 10.5937/jaes0-44668 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1134 pages: 928-939

Snežana Tadić
University of Belgrade, Faculty of Transport and Traffic Engineering, Logistics Department, Belgrade, Serbia

Miloš Veljović*
University of Belgrade, Faculty of Transport and Traffic Engineering, Logistics Department, Belgrade, Serbia

Mladen Krstić
University of Belgrade, Faculty of Transport and Traffic Engineering, Logistics Department, Belgrade, Serbia

Slobodan Zečević
University of Belgrade, Faculty of Transport and Traffic Engineering, Logistics Department, Belgrade, Serbia

The development of the Internet has accelerated the development of electronic commerce, which has led to changes in the management of supply chains and logistics. Unlike traditional shopping trips, there is a need for home deliveries and appropriate logistics systems for their implementation. To overcome new challenges and achieve process efficiency and the quality of home delivery service, there is a need for individual or integrated application of various Industry 4.0 technologies such as the internet of things, additive manufacturing, autonomous vehicles, blockchain, big data, data mining, artificial intelligence, virtual and augmented reality, etc. Accordingly, this paper aims to provide a comprehensive overview and description of the application of technological solutions of Industry 4.0 in home delivery. This goal is achieved through a comprehensive literature review on the topic. The results indicate that although a large number of studies in the literature dealt with the application of individual or integrated Industry 4.0 solutions in home delivery or last-mile logistics, a comprehensive review of the application of existing solutions in home delivery has not been carried out so far. This is thereby the main contribution of this paper. Overview of the technologies application provides a basis for identification of those that have the widest possibilities and generate the most positive effects, and should thus be the focus of future studies and development plans.

View article

This paper was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

1.      Yaqiong, L. V., Lei, T. U., Lee, C. K., & Xin, T. A. N. G. (2018). IoT based omni-channel logistics service in industry 4.0. 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), p. 240-243.

2.      Marković, M., Jacobs, N., Dryja, K., Edwards, P, & Strachan, N.J.C. (2020). Integrating Internet of Things, Provenance, and Blockchain to Enhance Trust in Last Mile Food Deliveries. Frontiers in Sustainable Food Systems, vol. 4, 563424, DOI: 10.3389/fsufs.2020.563424.

3.      Demir, M., Turetken, O., & Ferwom, A. (2019). Blockchain and IoT for delivery assurance on supply chain (BIDAS). 2019 IEEE International Conference on Big Data (Big Data), p. 5213-5222.

4.      Wanganoo, L., & Patil, A. (2020). Preparing for the smart cities: IoT enabled last-mile delivery. 2020 Advances in Science and Engineering Technology International Conferences (ASET), p. 1-6.

5.      Korczak, J., & Kijewska, K. (2019). Smart Logistics in the development of Smart Cities. Transportation Research Procedia, vol. 39, 201-211, DOI: 10.1016/j.trpro.2019.06.022.

6.      Glistau, E., & Machado, N.I.C. (2019). Industry 4.0, Logistics 4.0 and Materials - Chances and Solutions. Materials Science Forum, vol. 919, 307-314, DOI: 10.4028/www.scientific.net/MSF.919.307.

7.      Hoffmann, T., & Prause, G. (2018). On the Regulatory Framework for Last-Mile Delivery Robots. Machines, vol. 6, no. 3, 33, DOI: 10.3390/machines6030033.

8.      Jeschke, S. (2016). Logistics 4.0—artificial Intelligence and other modern trends in transport and logistics.  XIII Forum of Polish Logistics Managers POLISH LOGISTICS.

9.      Krstić, M., Tadić, S., & Zečević, S. (2021). Technological solutions in logistics 4.0. Ekonomika preduzeća, vol. 69, no. 6-7, 385-401, DOI: 10.5937/EKOPRE2106385K.

10.   Wang, K. (2016). Logistics 4.0 solution: new challenges and opportunities. 6th International Workshop of Advanced Manufacturing and Automation, p. 68-74.

11.   Tadić, S. R. (2014). Modeling the performance of integrated city logistics systems, PhD thesis. Faculty of transport and traffic engineering, University of Belgrade, Belgrade.

12.   Tadić, S., & Zečević, S. (2016). Modeling concepts of city logistics. Faculty of transport and traffic engineering, University of Belgrade, Belgrade.

13.   Tadić, S., Zečević, S., & Krstić, M. (2015). City logistics - status and trends. International Journal for Traffic & Transport Engineering– IJTTE, vol. 5, no. 3, 319-343, DOI: 10.7708/ijtte.2015.5(3).09.

14.   Tadić, S., Zečević, S., & Petrović-Vujačić, J. (2013). Global trends and logistics development. Ekonomski vidici, vol. 18, no. 4, 519-532.

15.   Tadić, S., & Veljović, M. (2020). Home delivery: concept and characteristics. International journal for traffic and transport engineering – IJTTE, vol. 10, no. 4, 519 – 533, DOI: 10.7708/ijtte.2020.10(4).10.

16.   Efthymiou, O. K., & Ponis, S. T. (2021). Industry 4.0 Technologies and Their Impact in Contemporary Logistics: A Systematic Literature Review. Sustainability, vol. 13, no. 21, 11643, DOI: 10.3390/su132111643.

17.   Holubčík, M., Koman, G., & Soviar, J. (2021). Industry 4.0 in logistics operations. Transportation Research Procedia, vol. 53, 282-288, DOI: 10.1016/j.trpro.2021.02.040.

18.   Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia manufacturing, vol. 13, 1245-1252, DOI: 10.1016/j.promfg.2017.09.045.

19.   Pourmehdi, M., Paydar, M. M., Ghadimi, P., & Azadnia, A. H. (2022). Analysis and evaluation of challenges in the integration of Industry 4.0 and sustainable steel reverse logistics network. Computers & Industrial Engineering, vol. 163, 107808, DOI: 10.1016/j.cie.2021.107808.

20.   Dev, N. K., Shankar, R., & Swami, S. (2020). Diffusion of green products in industry 4.0: Reverse logistics issues during design of inventory and production planning system. International Journal of Production Economics, vol. 223, 107519, DOI: 10.1016/j.ijpe.2019.107519.

21.   Shah, S., Dikgang, G., & Menon, S. (2019). The global perception of industry 4.0 for reverse logistics. International Journal of Economics and Management Systems, vol. 4.

22.   Yavas, V., & Ozkan-Ozen, Y. D. (2020). Logistics centers in the new industrial era: A proposed framework for logistics center 4.0. Transportation Research Part E: Logistics and Transportation Review, vol. 135, 101864, DOI: 10.1016/j.tre.2020.101864.

23.   Kostrzewski, M., Varjan, P., & Gnap, J. (2020). Solutions dedicated to internal logistics 4.0. Grzybowska, K., Awasthi, A., Sawhney, R. (Eds.), Sustainable Logistics and Production in Industry 4.0, Springer, Cham, p. 243-262.

24.   Miškić, S., Tadić, S., Stević, Ž., Krstić, M., & Roso, V. (2023). A Novel Hybrid Model for the Evaluation of Industry 4.0 Technologies’ Applicability in Logistics Centers. Journal of Mathematics, 3532862, DOI: 10.1155/2023/3532862.

25.   Tadić, S., Krstić, M., Kovač, M., & Brnjac, N. (2021c). Smart solutions for the problems of city logistics, European Green Deal Challenges and Solutions for Mobility and Logistics in Cities, p. 3-17.

26.   Tadić, S., Krstić, M., Kovač, M., & Brnjac, N. (2022a). Evaluation of Smart City Logistics Solutions. Promet-Traffic &Transportation, vol. 34, no. 5, 725-738, DOI: 10.7307/ptt.v34i5.4122.

27.   Agnusdei, G. P., Gnoni, M. G., Sgarbossa, F., & Govindann, K. (2022). Challenges and perspectives of the Industry 4.0 technologies within the last-mile and first-mile reverse logistics: A systematic literature review. Research in Transportation Business & Management, 100896.

28.   Krstić, M., Agnusdei, G. P., Miglietta, P. P., & Tadić, S. (2022a). Logistics 4.0 toward circular economy in the agri-food sector. Sustainable Futures, vol. 4, 100097, DOI: 10.1016/j.sftr.2022.100097.

29.   Krstić, M., Agnusdei, G. P., Miglietta, P. P., & Tadić, S. (2022b). Logistics 4.0 in the function of circular economy in the agri-food sector. 5th Logistics international conference, LOGIC 2022, p. 199-209.

30.   Krstić, M., Agnusdei, G. P., Miglietta, P. P., Tadić, S., & Roso, V. (2022c). Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method. Sustainability, vol. 14, no. 9, 5632, DOI: 10.3390/su14095632.

31.   Rajput, S., & Singh, S. P. (2022). Industry 4.0 model for integrated circular economy-reverse logistics network. International Journal of Logistics Research and Applications, vol. 25, no. 4-5, 837-877, DOI:  10.1080/13675567.2021.1926950.

32.   Khan, S. A., Laalaoui, W., Hokal, F., Tareq, M., & Ahmad, L. (2022). Connecting reverse logistics with circular economy in the context of Industry 4.0. Kybernetes, (ahead-of-print).

33.   Sharma, V. P., Prakash, S., & Singh, R. (2022). What Prevents Sustainable Last-Mile Delivery in Industry 4.0? An Analysis and Decision Framework. Sustainability, vol. 14, no. 24, 16423, DOI: 10.3390/su142416423.

34.   Saraceni, A., Oleko, R., Guan, L., Bagaria, A., & Quintens, L. (2022). Autonomization and Digitalization: Index of Last Mile 4.0 Inclusive Transition. Kim, D.Y., Von Cieminski, G., Romero D. (Eds.), Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology. Springer, Cham, p. 173-182.

35.   Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, vol. 1, no. 1, 22–32, DOI: 10.1109/JIOT.2014.2306328.

36.   Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, vol. 54, no. 15, 2787-2805, DOI: 10.1016/j.comnet.2010.05.010.

37.   Yang, D. L., Liu, F., & Liang, Y. D. (2010). A survey of the internet of things. 1st International Conference on E-Business Intelligence (ICEBI 2010), p. 524-532.

38.   Chow, H. K. H., K. L. Choy, W. B. Lee, & K. C. Lau. (2006). Design of a RFID Case-based Resource Management System for Warehouse Operations. Expert Systems with Applications, vol. 30, no. 4, 561–576, DOI: 10.1016/j.eswa.2005.07.023.

39.   Xiao, X., He, Q., Fu, Z., Xu, M., & Zhang, X. (2016). Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics. Food Control, vol. 60, 656-666, DOI: 10.1016/j.foodcont.2015.09.012.

40.   Sharma, V., You, I., Pau, G., Collotta, M., Lim, J. D., & Kim, J. N. (2018). LoRaWAN-based energy-efficient surveillance by drones for intelligent transportation systems. Energies, vol. 11, no. 3, 573, DOI: 10.3390/en11030573.

41.   Ding, Y., Jin, M., Li, S., & Feng, D. (2020). Smart logistics based on the internet of things technology: an overview. International Journal of Logistics Research and Applications, vol. 24, no. 4, 1–23, DOI: 10.1080/13675567.2020.1757053.

42.   Wang, F., Wang, F., Ma, X., & Liu, J. (2019). Demystifying the Crowd Intelligence in Last Mile Parcel Delivery for Smart Cities. IEEE Network, vol. 33, no. 2, 23–29, DOI: 10.1109/MNET.2019.1800228.

43.   Weltevreden, J. W. J., & Rotem-Mindali, O. (2009). Mobility effects of B2C and C2C e-commerce in the Netherlands: a quantitative assessment. Journal of Transport Geography, vol. 17, no. 2, 83–92, DOI: 10.1016/j.jtrangeo.2008.11.005.

44.   Morganti, E., Seidel, S., Blanquart, C., Dablanc, L., & Lenz, B. (2014). The impact of e-commerce on final deliveries: alternative parcel delivery services in France and Germany. Transportation Research Procedia. vol. 4, 178-190, DOI: 10.1016/j.trpro.2014.11.014.

45.   Hiari, O., Abou-Tair, D. el D. I., & Abushaikha, I. (2017). An IoT-Based Virtual Addressing Framework for Intelligent Delivery Logistics. Lecture Notes in Electrical Engineering, vol. 424, 698–705, DOI: 10.1007/978-981-10-4154-9_80.

46.   Yuen, K. F., Wang, X., Ng, L. T. W., & Wong, Y. D. (2018). An investigation of customers’ intention to use self-collection services for last-mile delivery. Transport Policy, vol. 66, 1–8, DOI: 10.1016/j.tranpol.2018.03.001.

47.   Piplani, R., & Saraswat, A. (2012). Robust optimisation approach to the design of service networks for reverse logistics. International Journal of Production Research, vol. 50, no. 5, 1424–1437, DOI: 10.1080/00207543.2011.571942.

48.   Tadić, S., Krstić, M., Veljović, M., Zečević, S. (2022b). Households in the function of collection and delivery points: location decision problem. 5th Logistics international conference, LOGIC 2022, p. 45 – 54.

49.   Faugere, L., & Montreuil, B. (2016). Hyperconnected City logistics: Smart Lockers Terminals and last mile delivery networks. 3rd international physical internet conference.

50.   Tadić, S., Zečević, S., Veljović, M., & Krstić, M. (2021a). Home delivery technologies. VIII International Symposium NEW HORIZONS 2021 of Transport and Communications, p. 370-377.

51.   Jünemann, R., & Schmidt, T. (2000). Materialflußsysteme: systemtechnische Grundlagen. Springer, Berlin

52.   Joerss, M., Schroder, J., Neuhaus, F., Klink, C., & Mann, F. (2016). Parcel delivery: the future of last mile, McKinsey&Company, from https://bdkep.de/files/bdkep-dateien/pdf/2016_the_future_of_last_mile.pdf

53.   Tadić, S., & Veljović, M. (2021). Home delivery: a framework for structuring. International journal for traffic and transport engineering – IJTTE, vol. 11, no. 1, 30 – 74, DOI: 10.7708/ijtte.2021.11(1).03

54.   Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, vol. 54, 86–109, DOI: 10.1016/j.trc.2015.03.005.

55.   Kovač, M., Tadić, S., Krstić, M., & Bouraima, M. B. (2021). Novel spherical fuzzy MARCOS method for assessment of drone-based city logistics concepts. Complexity, 2021, 2374955, DOI: 10.1155/2021/2374955.

56.   Tadić, S., Kovač, M., & Čokorilo, O. (2021b). The application of drones in city logistics concepts. Promet-Traffic&Transportation, vol. 33, no. 3, 451-462, DOI: 10.7307/ptt.v33i3.3721.

57.   Taeihagh, A., & Lim, H.S.M. (2019). Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transport Reviews, vol. 39, no. 1, 103-128, DOI: 10.1080/01441647.2018.1494640.

58.   Taniguchi, E., Thompson, R. G., & Qureshi, A. G. (2020). Modelling city logistics using recent innovative technologies. Transportation Research Procedia, vol. 46, 3-12, DOI: 10.1016/j.trpro.2020.03.157.

59.   Bellman, R. E. (1978). An introduction to Artificial Intelligence: Can Computers Think? Boyd & Fraser Publishing Company, San Francisco.

60.   Jucha, P. (2021). Use of artificial intelligence in last mile delivery. SHS Web of Conferences (Vol. 92, p. 04011). EDP Sciences.

61.   Song, X., Yang, S., Huang, Z., & Huang, T. (2019). The application of artificial intelligence in electronic commerce. Journal of Physics: Conference Series (Vol. 1302, No. 3, p. 032030). IOP Publishing.

62.   Rosendorff, A., Hodes, A., & Fabian, B. (2021). Artificial intelligence for last-mile logistics - Procedures and architecture. The Online Journal of Applied Knowledge Management (OJAKM), vol. 9, no. 1, 46-61, DOI: 10.36965/OJAKM.2021.9(1)46-61.

63.   Engelhardt, M., Seeck, S., & Geier, B. (2022). Artificial Intelligence in Urban Last Mile Logistics - Status Quo, Potentials and Key Challenges. Dynamics in Logistics: Proceedings of the 8th International Conference LDIC 2022, p. 275-289.

64.   Feng, Z. (2020). Constructing rural e-commerce logistics model based on ant colony algorithm and artificial intelligence method. Soft Computing, vol. 24, no. 11, 7937-7946, DOI: 10.1007/s00500-019-04046-8.

65.   Stoltz, M. H., Giannikas, V., McFarlane, D., Strachan, J., Um, J., & Srinivasan, R. (2017). Augmented reality in warehouse operations: opportunities and barriers. IFAC-PapersOnLine, vol. 50, no. 1, 12979-12984, DOI: 10.1016/j.ifacol.2017.08.1807.

66.   Winkel, J. H., Datcu, D., & Buijs, P. (2020). Augmented Reality could transform last-mile logistics. SUI '20: Symposium on Spatial User Interaction, p. 1-2.

67.   Tatasciore, D. (2018). DelivAR: An Augmented Reality Mobile Application to Expedite the Package Identification Process for Last-mile Deliveries, thesis for: M. Sc. Digital Media, University of Bremen, Bremen.

68.   Glockner, H., Jannek, K., Mahn, J., & Theis, B. (2014). Augmented reality in logistics, from https://www.dhl.com/

69.   DHL (2016). Robotics in Logistics: A DPDHL perspective on implications and use cases for the logistics industry. from https://www.thehive-network.com/wp-content/uploads/2017/03/DHL_RoboticsInLogistics.pdf

70.   Carbone, V., Roquet, A., & Roussat, C. (2017). The Rise of Crowd Logistics: A New Way to Co-Create Logistics Value. Journal of Business Logistics, vol. 38, no. 4, 238-252, DOI: 10.1111/jbl.12164.

71.   Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. 2013 International Conference on Collaboration Technologies and Systems (CTS), p. 42 – 47.

72.   Wu, X., Zhu, X., Wu, G., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1, 97-107, DOI: 10.1109/TKDE.2013.109.

73.   Ghosh, D. (2015). Big Data in Logistics and Supply Chain Management - A rethinking step. International Symposium on Advanced Computing and Communication (ISACC), p. 168-173.

74.   Haber, S. A., & Stornetta Jr, W. S. (1992). U.S. Patent No. 5,136,647. Washington, DC: U.S. Patent and Trademark Office.

75.   Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system, from: https://git.dhimmel.com/bitcoin-whitepaper/

76.   Li, X., Gong, L., Liu, X., Jiang, F., Shi, W., Fan, L., Gao, H., Li, R., & Xu, J. (2022). Solving the last mile problem in logistics: A mobile edge computing and blockchain based unmanned aerial vehicle delivery system. Concurrency and Computation: Practice and Experience, vol. 34, no. 7, e6068, DOI: 10.1002/cpe.6068.

77.   Naclerio, A.G., & De Giovanni, P. (2022). Blockchain, logistics and omnichannel for last mile and performance. The International Journal of Logistics Management, vol. 33, no. 2, 663-686, DOI: 10.1108/IJLM-08-2021-0415.

78.   Issaoui, Y., Khiat, A., Bahnasse, A., & Ouajji, H. (2019). Smart logistics: Study of the application of blockchain technology. Procedia Computer Science, vol. 160, 266-271, DOI: 10.1016/j.procs.2019.09.467.

79.   Hribernik, M., Zero, K., Kummer, S., & Herold, D. M. (2020). City logistics: Towards a blockchain decision framework for collaborative parcel deliveries in micro-hubs. Transportation Research Interdisciplinary Perspectives, vol. 8, 100274, DOI: 10.1016/j.trip.2020.100274.

80. &