DOI: 10.5937/jaes0-44668
This is an open access article distributed under the CC BY 4.0
Volume 21 article 1134 pages: 928-939
The development of the Internet has accelerated the development of electronic commerce, which has led to changes in the management of supply chains and logistics. Unlike traditional shopping trips, there is a need for home deliveries and appropriate logistics systems for their implementation. To overcome new challenges and achieve process efficiency and the quality of home delivery service, there is a need for individual or integrated application of various Industry 4.0 technologies such as the internet of things, additive manufacturing, autonomous vehicles, blockchain, big data, data mining, artificial intelligence, virtual and augmented reality, etc. Accordingly, this paper aims to provide a comprehensive overview and description of the application of technological solutions of Industry 4.0 in home delivery. This goal is achieved through a comprehensive literature review on the topic. The results indicate that although a large number of studies in the literature dealt with the application of individual or integrated Industry 4.0 solutions in home delivery or last-mile logistics, a comprehensive review of the application of existing solutions in home delivery has not been carried out so far. This is thereby the main contribution of this paper. Overview of the technologies application provides a basis for identification of those that have the widest possibilities and generate the most positive effects, and should thus be the focus of future studies and development plans.
This paper was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.
1.
Yaqiong,
L. V., Lei, T. U., Lee, C. K., & Xin, T. A. N. G. (2018). IoT based omni-channel logistics service in industry 4.0. 2018 IEEE
International Conference on Service Operations and Logistics, and Informatics (SOLI), p. 240-243.
2.
Marković, M., Jacobs, N.,
Dryja, K., Edwards, P, & Strachan, N.J.C. (2020). Integrating Internet of
Things, Provenance, and Blockchain to Enhance Trust in Last Mile Food
Deliveries. Frontiers in Sustainable Food
Systems, vol. 4, 563424, DOI: 10.3389/fsufs.2020.563424.
3.
Demir,
M., Turetken, O., & Ferwom, A. (2019). Blockchain
and IoT for delivery assurance on supply chain (BIDAS). 2019 IEEE International
Conference on Big Data (Big Data), p. 5213-5222.
4.
Wanganoo, L., & Patil, A.
(2020). Preparing for the smart cities: IoT enabled last-mile delivery. 2020
Advances in Science and Engineering Technology International Conferences (ASET), p. 1-6.
5.
Korczak, J., & Kijewska, K.
(2019). Smart Logistics in the development of Smart Cities. Transportation Research Procedia, vol.
39, 201-211, DOI: 10.1016/j.trpro.2019.06.022.
6.
Glistau, E., & Machado,
N.I.C. (2019). Industry 4.0, Logistics 4.0 and Materials - Chances and
Solutions. Materials Science Forum,
vol. 919, 307-314, DOI: 10.4028/www.scientific.net/MSF.919.307.
7.
Hoffmann, T., & Prause, G.
(2018). On the Regulatory Framework for Last-Mile Delivery Robots. Machines, vol. 6, no. 3, 33, DOI: 10.3390/machines6030033.
8.
Jeschke, S. (2016). Logistics
4.0—artificial Intelligence and other modern trends in transport and
logistics. XIII Forum of Polish
Logistics Managers POLISH LOGISTICS.
9.
Krstić, M., Tadić, S., &
Zečević, S. (2021). Technological solutions in logistics 4.0. Ekonomika preduzeća, vol. 69, no.
6-7, 385-401, DOI: 10.5937/EKOPRE2106385K.
10.
Wang, K. (2016). Logistics 4.0
solution: new challenges and opportunities. 6th International Workshop of
Advanced Manufacturing and Automation, p. 68-74.
11.
Tadić, S. R. (2014). Modeling the performance of integrated city
logistics systems, PhD thesis. Faculty of transport and traffic
engineering, University of Belgrade, Belgrade.
12.
Tadić, S., & Zečević, S.
(2016). Modeling concepts of city
logistics. Faculty of transport and traffic engineering, University of
Belgrade, Belgrade.
13.
Tadić, S., Zečević, S., &
Krstić, M. (2015). City logistics - status and trends. International Journal for Traffic & Transport Engineering– IJTTE,
vol. 5, no. 3, 319-343, DOI: 10.7708/ijtte.2015.5(3).09.
14.
Tadić, S., Zečević, S., &
Petrović-Vujačić, J. (2013). Global trends and logistics development. Ekonomski vidici, vol. 18, no. 4,
519-532.
15.
Tadić, S., & Veljović, M.
(2020). Home delivery: concept and characteristics. International journal for traffic and transport engineering – IJTTE,
vol. 10, no. 4, 519 – 533, DOI: 10.7708/ijtte.2020.10(4).10.
16.
Efthymiou, O. K., & Ponis,
S. T. (2021). Industry 4.0 Technologies and Their Impact in Contemporary
Logistics: A Systematic Literature Review. Sustainability, vol. 13, no. 21, 11643, DOI: 10.3390/su132111643.
17.
Holubčík, M., Koman, G., &
Soviar, J. (2021). Industry 4.0 in logistics operations. Transportation Research Procedia, vol.
53, 282-288, DOI: 10.1016/j.trpro.2021.02.040.
18.
Barreto, L., Amaral, A., &
Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia manufacturing, vol. 13,
1245-1252, DOI: 10.1016/j.promfg.2017.09.045.
19.
Pourmehdi, M., Paydar, M. M.,
Ghadimi, P., & Azadnia, A. H. (2022). Analysis and evaluation of challenges
in the integration of Industry 4.0 and sustainable steel reverse logistics
network. Computers & Industrial
Engineering, vol. 163, 107808, DOI: 10.1016/j.cie.2021.107808.
20.
Dev, N. K., Shankar, R., &
Swami, S. (2020). Diffusion of green products in industry 4.0: Reverse
logistics issues during design of inventory and production planning
system. International Journal of
Production Economics, vol. 223, 107519, DOI: 10.1016/j.ijpe.2019.107519.
21.
Shah,
S., Dikgang, G., & Menon, S. (2019). The global
perception of industry 4.0 for reverse logistics. International Journal of Economics and Management Systems, vol.
4.
22.
Yavas, V., & Ozkan-Ozen, Y.
D. (2020). Logistics centers in the new industrial era: A proposed framework
for logistics center 4.0. Transportation
Research Part E: Logistics and Transportation Review, vol. 135,
101864, DOI: 10.1016/j.tre.2020.101864.
23.
Kostrzewski, M., Varjan, P.,
& Gnap, J. (2020). Solutions dedicated to internal logistics 4.0.
Grzybowska, K., Awasthi, A., Sawhney, R. (Eds.), Sustainable Logistics and
Production in Industry 4.0, Springer, Cham, p. 243-262.
24.
Miškić, S., Tadić, S., Stević,
Ž., Krstić, M., & Roso, V. (2023). A Novel Hybrid Model for the Evaluation
of Industry 4.0 Technologies’ Applicability in Logistics Centers. Journal of Mathematics, 3532862, DOI: 10.1155/2023/3532862.
25.
Tadić, S., Krstić, M., Kovač,
M., & Brnjac, N. (2021c). Smart solutions for the problems of city
logistics, European Green Deal Challenges and Solutions for Mobility and
Logistics in Cities, p. 3-17.
26.
Tadić, S., Krstić, M., Kovač,
M., & Brnjac, N. (2022a). Evaluation of Smart City Logistics Solutions. Promet-Traffic &Transportation, vol.
34, no. 5, 725-738, DOI: 10.7307/ptt.v34i5.4122.
27.
Agnusdei,
G. P., Gnoni, M. G., Sgarbossa, F., & Govindann, K. (2022). Challenges and perspectives of the Industry 4.0 technologies within
the last-mile and first-mile reverse logistics: A systematic literature
review. Research in Transportation
Business & Management, 100896.
28.
Krstić, M., Agnusdei, G. P.,
Miglietta, P. P., & Tadić, S. (2022a). Logistics 4.0 toward circular
economy in the agri-food sector. Sustainable
Futures, vol. 4, 100097, DOI: 10.1016/j.sftr.2022.100097.
29.
Krstić, M., Agnusdei, G. P.,
Miglietta, P. P., & Tadić, S. (2022b). Logistics 4.0 in the function of
circular economy in the agri-food sector. 5th Logistics international
conference, LOGIC 2022, p. 199-209.
30.
Krstić, M., Agnusdei, G. P.,
Miglietta, P. P., Tadić, S., & Roso, V. (2022c). Applicability of Industry
4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on
COmprehensive Distance Based RAnking (COBRA) Method. Sustainability, vol. 14, no. 9, 5632, DOI: 10.3390/su14095632.
31.
Rajput, S., & Singh, S. P.
(2022). Industry 4.0 model for integrated circular economy-reverse logistics
network. International Journal of
Logistics Research and Applications, vol. 25, no. 4-5, 837-877,
DOI: 10.1080/13675567.2021.1926950.
32.
Khan, S. A., Laalaoui, W.,
Hokal, F., Tareq, M., & Ahmad, L. (2022). Connecting reverse logistics with
circular economy in the context of Industry 4.0. Kybernetes, (ahead-of-print).
33.
Sharma, V. P., Prakash, S.,
& Singh, R. (2022). What Prevents Sustainable Last-Mile Delivery in
Industry 4.0? An Analysis and Decision Framework. Sustainability, vol. 14, no. 24, 16423, DOI:
10.3390/su142416423.
34.
Saraceni, A., Oleko, R., Guan,
L., Bagaria, A., & Quintens, L. (2022). Autonomization and Digitalization:
Index of Last Mile 4.0 Inclusive Transition. Kim, D.Y., Von Cieminski, G.,
Romero D. (Eds.), Advances in Production Management Systems. Smart Manufacturing
and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in
Information and Communication Technology. Springer, Cham, p. 173-182.
35.
Zanella,
A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, vol. 1, no. 1, 22–32, DOI: 10.1109/JIOT.2014.2306328.
36.
Atzori, L., Iera, A., &
Morabito, G. (2010). The internet of things: A survey. Computer Networks, vol. 54, no. 15, 2787-2805, DOI: 10.1016/j.comnet.2010.05.010.
37.
Yang,
D. L., Liu, F., & Liang, Y. D. (2010). A survey of
the internet of things. 1st International Conference on E-Business Intelligence
(ICEBI 2010), p. 524-532.
38.
Chow, H. K. H., K. L. Choy, W.
B. Lee, & K. C. Lau. (2006). Design of a RFID Case-based Resource
Management System for Warehouse Operations. Expert
Systems with Applications, vol. 30, no. 4, 561–576, DOI: 10.1016/j.eswa.2005.07.023.
39.
Xiao, X., He, Q., Fu, Z., Xu,
M., & Zhang, X. (2016). Applying CS and WSN methods for improving
efficiency of frozen and chilled aquatic products monitoring system in cold
chain logistics. Food Control, vol.
60, 656-666, DOI: 10.1016/j.foodcont.2015.09.012.
40.
Sharma, V., You, I., Pau, G.,
Collotta, M., Lim, J. D., & Kim, J. N. (2018). LoRaWAN-based
energy-efficient surveillance by drones for intelligent transportation
systems. Energies, vol. 11,
no. 3, 573, DOI: 10.3390/en11030573.
41.
Ding,
Y., Jin, M., Li, S., & Feng, D. (2020). Smart
logistics based on the internet of things technology: an overview. International Journal of Logistics Research
and Applications, vol. 24, no. 4, 1–23, DOI: 10.1080/13675567.2020.1757053.
42.
Wang,
F., Wang, F., Ma, X., & Liu, J. (2019). Demystifying
the Crowd Intelligence in Last Mile Parcel Delivery for Smart Cities. IEEE Network, vol. 33, no. 2, 23–29,
DOI: 10.1109/MNET.2019.1800228.
43.
Weltevreden,
J. W. J., & Rotem-Mindali, O. (2009). Mobility
effects of B2C and C2C e-commerce in the Netherlands: a quantitative
assessment. Journal of Transport
Geography, vol. 17, no. 2, 83–92, DOI: 10.1016/j.jtrangeo.2008.11.005.
44.
Morganti,
E., Seidel, S., Blanquart, C., Dablanc, L., & Lenz, B. (2014). The impact of e-commerce on final deliveries: alternative parcel
delivery services in France and Germany. Transportation
Research Procedia. vol. 4, 178-190, DOI: 10.1016/j.trpro.2014.11.014.
45.
Hiari, O., Abou-Tair, D. el D.
I., & Abushaikha, I. (2017). An IoT-Based Virtual Addressing Framework for
Intelligent Delivery Logistics. Lecture
Notes in Electrical Engineering, vol. 424, 698–705, DOI: 10.1007/978-981-10-4154-9_80.
46.
Yuen,
K. F., Wang, X., Ng, L. T. W., & Wong, Y. D. (2018). An investigation of customers’ intention to use self-collection
services for last-mile delivery. Transport
Policy, vol. 66, 1–8, DOI: 10.1016/j.tranpol.2018.03.001.
47.
Piplani, R., & Saraswat, A.
(2012). Robust optimisation approach to the design of service networks for
reverse logistics. International Journal
of Production Research, vol. 50, no. 5, 1424–1437, DOI:
10.1080/00207543.2011.571942.
48.
Tadić, S., Krstić, M.,
Veljović, M., Zečević, S. (2022b). Households in the function of collection and
delivery points: location decision problem. 5th Logistics international
conference, LOGIC 2022, p. 45 – 54.
49.
Faugere, L., & Montreuil,
B. (2016). Hyperconnected City logistics: Smart Lockers Terminals and last mile
delivery networks. 3rd international physical internet conference.
50.
Tadić, S., Zečević, S.,
Veljović, M., & Krstić, M. (2021a). Home delivery technologies. VIII
International Symposium NEW HORIZONS 2021 of Transport and Communications, p.
370-377.
51.
Jünemann,
R., & Schmidt, T. (2000). Materialflußsysteme:
systemtechnische Grundlagen. Springer, Berlin
52.
Joerss,
M., Schroder, J., Neuhaus, F., Klink, C., & Mann, F. (2016). Parcel delivery: the future of last mile, McKinsey&Company, from
https://bdkep.de/files/bdkep-dateien/pdf/2016_the_future_of_last_mile.pdf
53.
Tadić, S., & Veljović, M.
(2021). Home delivery: a framework for structuring. International journal for traffic and transport engineering – IJTTE,
vol. 11, no. 1, 30 – 74, DOI: 10.7708/ijtte.2021.11(1).03
54.
Murray, C. C., & Chu, A. G.
(2015). The flying sidekick traveling salesman problem: Optimization of
drone-assisted parcel delivery. Transportation
Research Part C: Emerging Technologies, vol. 54, 86–109, DOI: 10.1016/j.trc.2015.03.005.
55.
Kovač, M., Tadić, S., Krstić,
M., & Bouraima, M. B. (2021). Novel spherical fuzzy MARCOS method for
assessment of drone-based city logistics concepts. Complexity, 2021, 2374955, DOI: 10.1155/2021/2374955.
56.
Tadić, S., Kovač, M., &
Čokorilo, O. (2021b). The application of drones in city logistics concepts. Promet-Traffic&Transportation, vol.
33, no. 3, 451-462, DOI: 10.7307/ptt.v33i3.3721.
57.
Taeihagh, A., & Lim, H.S.M.
(2019). Governing autonomous vehicles: emerging responses for safety,
liability, privacy, cybersecurity, and industry risks. Transport Reviews, vol. 39, no. 1, 103-128, DOI: 10.1080/01441647.2018.1494640.
58.
Taniguchi, E., Thompson, R. G.,
& Qureshi, A. G. (2020). Modelling city logistics using recent innovative
technologies. Transportation Research
Procedia, vol. 46, 3-12, DOI: 10.1016/j.trpro.2020.03.157.
59.
Bellman, R. E. (1978). An introduction to Artificial Intelligence:
Can Computers Think? Boyd & Fraser Publishing Company, San Francisco.
60.
Jucha, P. (2021). Use of
artificial intelligence in last mile delivery. SHS Web of Conferences (Vol. 92, p. 04011). EDP Sciences.
61.
Song, X., Yang, S., Huang, Z.,
& Huang, T. (2019). The application of artificial intelligence in
electronic commerce. Journal of Physics: Conference Series (Vol. 1302, No. 3,
p. 032030). IOP Publishing.
62.
Rosendorff, A., Hodes, A.,
& Fabian, B. (2021). Artificial intelligence for last-mile logistics -
Procedures and architecture. The Online
Journal of Applied Knowledge Management (OJAKM), vol. 9, no. 1, 46-61, DOI:
10.36965/OJAKM.2021.9(1)46-61.
63.
Engelhardt,
M., Seeck, S., & Geier, B. (2022). Artificial
Intelligence in Urban Last Mile Logistics - Status Quo, Potentials and Key
Challenges. Dynamics in Logistics: Proceedings of the 8th International
Conference LDIC 2022, p. 275-289.
64.
Feng, Z. (2020). Constructing
rural e-commerce logistics model based on ant colony algorithm and artificial
intelligence method. Soft Computing, vol.
24, no. 11, 7937-7946, DOI: 10.1007/s00500-019-04046-8.
65.
Stoltz,
M. H., Giannikas, V., McFarlane, D., Strachan, J., Um, J., & Srinivasan, R.
(2017). Augmented reality in warehouse operations:
opportunities and barriers. IFAC-PapersOnLine,
vol. 50, no. 1, 12979-12984, DOI: 10.1016/j.ifacol.2017.08.1807.
66.
Winkel,
J. H., Datcu, D., & Buijs, P. (2020). Augmented
Reality could transform last-mile logistics. SUI '20: Symposium on Spatial User
Interaction, p. 1-2.
67.
Tatasciore, D. (2018). DelivAR:
An Augmented Reality Mobile Application to Expedite the Package Identification
Process for Last-mile Deliveries, thesis for: M. Sc. Digital Media, University
of Bremen, Bremen.
68.
Glockner, H., Jannek, K., Mahn,
J., & Theis, B. (2014). Augmented reality in logistics, from
https://www.dhl.com/
69.
DHL (2016). Robotics in
Logistics: A DPDHL perspective on implications and use cases for the logistics
industry. from
https://www.thehive-network.com/wp-content/uploads/2017/03/DHL_RoboticsInLogistics.pdf
70.
Carbone, V., Roquet, A., &
Roussat, C. (2017). The Rise of Crowd Logistics: A New Way to Co-Create
Logistics Value. Journal of Business
Logistics, vol. 38, no. 4, 238-252, DOI: 10.1111/jbl.12164.
71.
Sagiroglu, S., & Sinanc, D.
(2013). Big data: A review. 2013 International Conference on Collaboration
Technologies and Systems (CTS), p. 42 – 47.
72.
Wu,
X., Zhu, X., Wu, G., & Ding, W. (2014). Data mining
with big data. IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 1, 97-107, DOI: 10.1109/TKDE.2013.109.
73.
Ghosh, D. (2015). Big Data in
Logistics and Supply Chain Management - A rethinking step. International
Symposium on Advanced Computing and Communication (ISACC), p. 168-173.
74.
Haber,
S. A., & Stornetta Jr, W. S. (1992). U.S. Patent
No. 5,136,647. Washington, DC: U.S. Patent and Trademark Office.
75.
Nakamoto, S. (2008). Bitcoin: A
peer-to-peer electronic cash system, from: https://git.dhimmel.com/bitcoin-whitepaper/
76.
Li, X., Gong, L., Liu, X.,
Jiang, F., Shi, W., Fan, L., Gao, H., Li, R., & Xu, J. (2022). Solving the
last mile problem in logistics: A mobile edge computing and blockchain based
unmanned aerial vehicle delivery system. Concurrency
and Computation: Practice and Experience, vol. 34, no. 7, e6068, DOI: 10.1002/cpe.6068.
77. Naclerio, A.G., & De Giovanni,
P. (2022). Blockchain, logistics and omnichannel
for last mile and performance. The International Journal of Logistics Management, vol.
33, no. 2, 663-686, DOI: 10.1108/IJLM-08-2021-0415.
78.
Issaoui, Y., Khiat, A.,
Bahnasse, A., & Ouajji, H. (2019). Smart logistics: Study of the
application of blockchain technology. Procedia
Computer Science, vol. 160, 266-271, DOI: 10.1016/j.procs.2019.09.467.
79.
Hribernik,
M., Zero, K., Kummer, S., & Herold, D. M. (2020). City
logistics: Towards a blockchain decision framework for collaborative parcel
deliveries in micro-hubs. Transportation
Research Interdisciplinary Perspectives, vol. 8, 100274, DOI: 10.1016/j.trip.2020.100274.
80. &