Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

MULTI-PARAMETRIC OPTIMIZATION OF WIRE-EDM MACHINing ON ARTIFICIALLY-AGED AL6061/B4C COMPOSITE USing RSM AND GREY RELATIONAL ANALYSIS


DOI: 10.5937/jaes0-44452 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1152 pages: 1121-1131

Subraya Krishna Bhat
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India

Shreyas D Sai
Department of Mechatronics, Manipal Institute of Technology Manipal Academy of Higher Education, Manipal, Karnataka, India-576104

Gowri Shankar M C
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104, India

Deepak Doreswamy*
Department of Mechatronics, Manipal Institute of Technology Manipal Academy of Higher Education, Manipal, Karnataka, India-576104

Wire-electric discharge machining (W-EDM) is an advanced technology used for machining hard-to-cut materials with high hardness. Therefore, it is critical to characterize and model the Wire-ED machining performance for new materials having remarkable mechanical properties with respect to the multiple control parameters involved in the process. In this light, the present study investigates the multi-parametric optimization of current, pulse-on time (Ton), and pulse-off time (Toff) on material removal rate (MRR), kerf width (KW), surface roughness (Ra) for Wire-EDM of artificially aged Al6061/B4C composite using response surface method (RSM) and grey relational analysis (GRA). The results of the investigation revealed that, Toff has the most significant impact on the multi-parametric response, with a percentage-wise contribution of 38% from the analysis of variance. The optimization results established that a multi-parametric combination of current – 6 A, Ton – 42.5253 µs, and Toff – 10 µs achieved the optimum response of MRR – 1.7036 mg/min, KW – 0.1727 mm, and Ra – 5.6525 µm. The results obtained herewith have practical relevance to Wire-EDM industry for manufacturing applications.

View article

1.      Sakaguchi, Y., Saida, T., Kuri, S., Ohsono, K., Hode, S., Matsuoka. T. (2022). Development of High Capacity Transportable Storage Cask for Basket. The Proceedings of the National Symposium on Power and Energy Systems, vol. 8, 449-450, DOI: 10.1299/jsmepes.2002.8.449

2.      Yamamoto, T., Hode, S., Kamiwaki, Y., Tamaki, H., Matsuoka, T., Hojo. K. (2006). Developments in Spent Fuel Transport and Storage Casks, Mitsubishi Heavy Industries, Ltd. Technical Review, vol. 43, no. 4, from https://www.mhi.co.jp/technology/review/pdf/e434/e434050.pdf

3.      Chand, S., Chandrasekhar. P., (2020). Influence of B4C/BN on solid particle erosion of Al6061 metal matrix hybrid composites fabricated through powder metallurgy technique. Ceram. Int. vol. 46, no. 11, 17621-17630, DOI: 10.1016/j.ceramint.2020.04.064

4.      Karabulut, Ş., Karakoç, H., Çıtak. R., Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Compos Part B: Eng, vol. 101, no. 15, 87-98, DOI: 10.1016/j.compositesb.2016.07.006

5.      Doreswamy, D., Gowrishankar, M.C., Sai. S.D. (2022). Investigation on the Wire Electric Discharge Machining Performance of artificially aged Al6061/B4C composites by Response Surface Method. Mater. Res. vol. 25, e20220010, DOI: 10.1590/1980-5373-MR-2022-0010

6.      Gowrishankar, M.C., Hiremath, P., Shettar, M., Sharma, S.S., Rao. S.U. (2020). Experimental validity on the casting characteristics of stir cast aluminium composites. J Mater Res Technol. vol. 9, no. 3, 3340-3347, DOI: 10.1016/j.jmrt.2020.01.028

7.      Y.C. Shin, C. Dandekar. Mechanics and Modeling of Chip Formation in Machining of MMC. In: Davim, J. (eds) Machining of Metal Matrix Composites. Springer, London. (2012)

8.      Shettar, M., Hiremath, P., Shankar, G., Kini, A., Sharma. S.S. (2021). Tribolayer Behaviour and Wear of Artificially Aged Al6061 Hybrid Composites. Int J Automot Mech Eng. vol. 18, no. 2, 8668–8676, DOI: 10.15282/ijame.18.2.2021.04.0660

9.      Doreswamy, D., Bongale, A.M., Piekarski, M., Bongale, A., Kumar, S., Pimenov, D.Y., Giasin, K., Nadolny, K. (2021). Optimization and Modeling of Material Removal Rate in Wire-EDM of Silicon Particle Reinforced Al6061 Composite. Materials, vol. 14, no. 21, 6420, DOI: 10.3390/ma14216420

10.   Doreswamy, D., Sai, S.D., Bhat, S.K., Rao. R.N. (2022). Optimization of material removal rate and surface characterization of wire electric discharge machined Ti-6Al-4V alloy by response surface method. Manuf Rev. vol. 9, 15, DOI: 10.1051/mfreview/2022016

11.   Satishkumar, D., Kanthababu, M., Vajjiravelu. V. (2011). Investigation of wire electrical discharge machining characteristics of Al6063/SiCp composites. Int J Adv Manuf Technol., vol. 56, 975–986. DOI: 10.1007/s00170-011-3242-5

12.   Babu, K.A., Venkataramaiah. P. (2015). Multi-response Optimization in Wire Electrical Discharge Machining (WEDM) of Al6061/SiCp Composite Using Hybrid Approach. J Manuf Sci Prod., vol. 15, no. 4, 327-338, DOI: 10.1515/jmsp-2015-0010

13.   Mythili, T., Thanigaivelan. R. (2020). Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies. Bulletin Pol Acad Sci Tech Sci., vol. 68, no. 6, 1403-1412, DOI: 10.24425/bpasts.2020.135382

14.   Velmurugan, N., Muniappan, A., Harikrishna, K.L., Sakthivel. T.G. (2021). Surface roughness modelling in wire EDM machining aluminium of Al6061 composite by ANFIS. Mater Today: Proc., DOI: 10.1016/j.matpr.2021.07.119

15.   Dey, A., Debnath, S., Pandey. K.M. (2017). Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach. Trans. Nonferrous Met. Soc. China., vol. 27, 998−1010, DOI: 10.1016/S1003-6326(17)60117-1

16.   Sreeram, H., Uthayakumar, M., Kumar, S.S., Kumaran, S.T., Korniejenko. K. (2022). Modelling Approach for the Prediction of Machinability in Al6061 Composites by Electrical Discharge Machining. Appl Sci., vol. 12, no. 5, 2673, DOI:

17.   Arikatla, S.P., Mannan, K.T., Krishnaiah. A. (2017). Parametric optimization in wire electrical discharge machining of titanium alloy using response surface methodology. Mater. Today: Proc., vol. 4, 1434–1441, DOI: 10.1016/j.matpr.2017.01.165

18.   Fuse, K., Dalsaniya, A., Modi, D., Vora, J., Pimenov, D.Y., Giasin, K., Prajapati, P., Chaudhari, R., Wojciechowski, S. (2021). Integration of fuzzy AHP and fuzzy topsis methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials, vol. 14, 7408, DOI: 10.3390/ma14237408

19.   Daneshmand. S., Kahrizi, E.F., LotfiNeyestanak, A.A., Monfared, V. (2014). Optimization of electrical discharge machining parameters for Niti shape memory alloy by using the Taguchi method. J. Marine Sci. Technol., vol. 22, 506–512, DOI: 10.6119/JMST-013-0624-1

20.   Doreswamy, D., Javeri. J. (2018). Effect of process parameters in EDM of D2 steel and estimation of coefficient for predicting surface roughness. Int. J. Mach. Mach. Mater., vol. 20, 101–117, DOI: 10.1504/IJMMM.2018.090542

21.   Sonawane, S.A., Ronge, B.P., Pawar. P.M. (2019). Multi-characteristic optimization of WEDM for Ti-6Al-4V by applying grey relational investigation during profile machining. J. Mech. Eng. Sci., vol. 13, 6059–6087, DOI: 10.15282/jmes.13.4.2019.22.0478

22.   Doreswamy, D., Shreyas, D.S., Bhat. S.K. (2022). Optimization of Material Removal Rate, Surface Roughness and Kerf Width in Wire-ED Machining of Ti-6Al-4V Using RSM and Grey Relation. Int J Eng, Trans B: Appl., vol. 35, no. 11, 2247-2255, DOI: 10.5829/IJE.2022.35.11B.20

23.   Phate, M.R., Toney, S.B., Phate. V.R. (2021). Multi-parametric Optimization of WEDM Using Artificial Neural Network (ANN)-Based PCA for Al/SiCp MMC. J. Inst. Eng. India Ser. C., vol. 102, 169–181, DOI: 10.1007/s40032-020-00615-1

24.   Sharma, S.S., Kini, A., Shankar, G., Rakesh, T.C., Chaitanya, K., Shettar. M. (2018). Tensile fractography of artificially aged Al6061-B4C composites. J Mech Eng Sci., vol. 12, no. 3, 3866-3875, DOI: 10.15282/jmes.12.3.2018.8.0339

25.   Gruzleski, J.E., Closset. B.M. (1990). The Treatment of Liquid Aluminum-Silicon Alloys. American Foundrymen's Society, Incorporated, 172-175, Schaumburg.

26.   Perumal, A., Kailasanathan, C., Stalin, B., Kumar, S.S., Rajkumar, P.R., Gangadharan, T., Venkatesan, G., Nagaprasad, N., Dhinakaran, V., Krishnaraj, R. (2022). Multiresponse Optimization of Wire Electrical Discharge Machining Parameters for Ti-6Al-2Sn-4Zr-2Mo (α-β) Alloy Using Taguchi-Grey Relational Approach. Advances in Materials Science and Engineering, vol. 2022, 6905239, DOI: 10.1155/2022/6905239

27.   Raju, K., Balakrishnan, M., Priya, C.B., Sivachitra, M., Rao, D.N. (2022). Parametric Optimization of Wire Electrical Discharge Machining in AA7075 Metal Matrix Composite. Advances in Materials Science and Engineering, vol. 2022, 4438419, DOI: 10.1155/2022/4438419

28.   Deepak, D., Davim, J.P. (2019). Multi-Response Optimization of Process Parameters in AWJ Machining of Hybrid GFRP Composite by Grey Relational Method. Procedia Manufacturing, vol. 35, 1211-1221, DOI: 10.1016/j.promfg.2019.07.021