Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

ANALYZing THE EFFECT OF FIXED AND MOVing BOTTLENECKS ON TRAFFIC FLOW AND CAR ACCIDENTS IN A TWO-LANE CELLULAR AUTOMATON MODEL


DOI: 10.5937/jaes0-45808 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1158 pages: 1179-1191

Ayoub Laarej
Laboratoire de Matière Condensée et Sciences Interdisciplinaries (LaMCScl), URL-CNRST, P. O. Box 1014, Faculty of Sciences, Mohammed V University in Rabat, Morocco

Noureddine Lakouari
Department of Computer Science, Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro 1, Tonanzintla, 72840, Puebla, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Insurgentes Sur 1582, Mexico City, 03940, Mexico

Azeddine Karakhi
Laboratoire de Matière Condensée et Sciences Interdisciplinaries (LaMCScl), URL-CNRST, P. O. Box 1014, Faculty of Sciences, Mohammed V University in Rabat, Morocco

Hamid Ez-Zahraouy*
Laboratoire de Matière Condensée et Sciences Interdisciplinaries (LaMCScl), URL-CNRST, P. O. Box 1014, Faculty of Sciences, Mohammed V University in Rabat, Morocco

Traffic bottleneck is considered as one of the major causes of the disturbance in traffic flow. The understanding the dynamics between vehicles and bottlenecks is crucial for enhancing traffic flow and ensuring road safety. This research examines a two-lane traffic cellular automaton model to understand the effects of static (e.g., lane reductions) and dynamic (e.g., slow-moving vehicles) bottlenecks on traffic flow and road safety. We found that at low vehicle densities, slow vehicles gravitate towards the open lane, while faster vehicles switch lanes to overtake, returning to their original lane post-bottleneck. At high densities, traffic flow near static bottlenecks ceases, independent of bottleneck length. Safety analysis shows that extended static bottlenecks reduce rear-end collision risk due to fewer lane changes and increased vehicle stationarity. At maximum density, gridlock nullifies the chance of such collisions. Our findings provide actionable insights for traffic planning focused on bottleneck management to improve road safety.

View article

1.      Armah, F., Yawson, D., Pappoe, A., lex A. N. M. (2010). A Systems Dynamics Approach to Explore Traffic       Congestion and Air Pollution Link in the City of Accra, Ghana. Sustainability, vol. 2 no. 1, 252-265, DOI: 10.3390/su2010252.

2.      Wang, J., Chi, L., Hu, X., Zhou, H. (2014). Urban Traffic Congestion Pricing Model with the Consideration of   Carbon Emissions Cost. Sustainability, vol. 6 no. 2, 676-691. DOI: 10.3390/su6020676.

3.      Liu, Y., Yan, X., Wang, Y., Yang, Z., Wu, J. (2017). Grid Mapping for Spatial Pattern Analyses of Recurrent Urban Traffic Congestion Based on Taxi GPS Sensing Data. Sustainability, vol. 9 no. 4, 533, DOI: 10.3390/su9040533.

4.      Nagatani, T., (2002). The physics of traffic jams. Reports on Progress in Physics, vol. 65 no. 9, 1331, DOI: 10.1088/0034-4885/65/9/203.

5.      Feng X., Saito M., Liu Y. (2016). Improve urban passenger transport management by rationally forecasting traffic congestion probability. International Journal of Production Research, vol. 54 no. 12, 3465-3474, DOI: 10.1080/00207543.2015.1062570.

6.      Feifei, H., Yan, X., Liu, Y., Ma, L. (2016). A Traffic Congestion Assessment Method for Urban Road Networks Based on Speed Performance Index. Procedia Engineering, vol. 137, 425-433, DOI: 10.1016/j.proeng.2016.01.277.

7.      Bando, M., Hasebe, K., Nakayama, A., Shibata, A, Sugiyama, Y. (1994). Structure stability of congestion in traffic dynamic. Japan Journal of Industrial and Applied Mathematics, vol. 11, 203–223, DOI: 10.1007/BF03167222.

8.      Bando, M., Hasebe, K., Nakayama, A., Shibata, A, Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation.  Physical Review E, vol. 51, 1035, DOI: 10.1103/PhysRevE.51.1035.

9.      Leclercq, L., (2007) “Bounded acceleration close to fixed and moving bottlenecks,” Transport. Res. Part B: Method., vol. 41, no. 3, pp. 309–319. http://dx.doi.org/10.1016/j.trb.2006.05.001.

10.   Schoenhof, M., Helbing, D., (2007). Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 41 (2), 135–166. https://doi.org/10.1287/trsc.1070.0192.

11.   Zhu, K., Bi, J.,  Wu, J.,  Li, S. (2016). Effects of speed bottleneck on traffic flow with feedback control signal. Modern Physics Letters B, vol. 30, 1650323, DOI: 10.1142/S0217984916503231.

12.   Sun, J., Li, T., Yu, M., Zhang, H.M., (2018). Exploring the congestion pattern at long-queued tunnel sag and increasing the efficiency by control. IEEE T Intell. Transp. Sys. 19 (12), 3765–3774 https://doi.org/10.1109/TITS.2017.2780103.

13.   Cassidy, M. J., and Bertini R. L., (1999). "Some traffic features at freeway bottlenecks", Transp. Res. B Methodol., vol. 33, no. 1, pp. 25-42. https://doi.org/10.1016/S0191-2615(98)00023-X.

14.   Sun, J., Zhang, S., and Tang K., (2014). "Online evaluation of an integrated control strategy at on-ramp bottleneck for urban expressways in Shanghai", IET Intell. Transp. Syst., vol. 8, no. 8, pp. 648-654. https://doi.org/10.1049/iet-its.2013.0131.

15.   Bertini, R. L.  and M. J. Cassidy, (2002). "Some observed queue discharge features at a freeway bottleneck downstream of a merge", Transp. Res. A Policy Pract., vol. 36, no. 8, pp. 683-697. https://doi.org/10.1016/S0965-8564(01)00030-1.

16.   Mazaré, P.-E., Dehwah, A.H., Claudel, C.G., Bayen, A.M., (2011). Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model. Transp. Res. Part B Methodol. 45 (10), 1727–1748. https://doi.org/10.1016/j.trb.2011.07.004.

17.   Muñoz, J.C., Daganzo, C.F., (2002). Moving bottlenecks: a theory grounded on experimental observation. In: A.P. Taylor, M. (Ed.), Transportation and Traffic Theory in the 21st Century. Emerald Group Publishing Limited, pp. 441–461. http://dx.doi.org/10.1016/B978-008043926-6/50024-5.

18.   Daganzo, C.F., Laval, J.A., (2005). Moving bottlenecks: a numerical method that converges in flows. Transp. Res. Part B 39 (9), 855–863, https://doi.org/10.1016/j.trb.2004.10.004.

19.   Wang, T., Liao, P., Tang, T.-Q., Huang, H.-J. (2022). Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: a new manifestation of capacity expansion paradox. Transp. Res. Part E Logist. Transp. Rev., vol. 168, 102941, https://doi.org/10.1016/j.tre.2022.102941.

20.   Yu, S., Zhao, C.; Song, L.; Li, Y.; Du, Y. (2023). Understanding Traffic Bottlenecks of Long Freeway Tunnels Based on a Novel Location-Dependent Lighting-Related Car-Following Model. Tunn. Undergr. Sp. Technol., vol. 136, 105098. https://doi.org/10.1016/J.TUST.2023.105098.

21.   Chen, D., and Ahn S., (2015). Variable speed limit control for severe nonrecurrent freeway bottlenecks,” Transp. Res. C, Emerg. Technol., vol. 51, pp. 210–230, https://doi.org/10.1016/j.trc.2014.10.015.

22.   Juran, I., Prashker, J. N., Bekhor, S., Ishai, Il. (2009). A dynamic traffic assignment model for the assessment of moving bottlenecks. Transportation Research Part C: Emerging Technologies, vol. 17 no. 3, 240-258, DOI: 10.1016/j.trc.2008.10.003.

23.   Fang, Y., Chen, J.-Z., Peng, Z.-Y. (2013). The effect of moving bottlenecks on a two-lane traffic flow. Chinese Physics B, vol. 22, 108902, DOI: 10.1088/1674-1056/22/10/108902.

24.   Jiang, R., Wu, Q. S., and Zhu, Z. J., (2001) Phys. Rev. E 64 017101, DOI: https://doi.org/10.1103/PhysRevE.64.017101.

25.   Zheng, S.-T., Jiang, R., Tian, J., Li, X., Treiber, M., Li, Z.-H., Gao, L.-D., and Jia, B., (2022) Empirical and experimental study on the growth pattern of traffic oscillations upstream of fixed bottleneck and model test. Transportation Research Part C: Emerging Technologies, vol. 140, p. 103729, https://doi.org/10.1016/j.trc.2022.103729.

26.   Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62 (2), 1805–1824. DOI: 10.1103/PhysRevE.62.1805

27.   Ou, H., Tang, T.Q. (2018). Impacts of moving bottlenecks on traffic flow. Physica A: Statistical Mechanics and its Applications. vol. 500, 131-138, DOI: 10.1016/j.physa.2018.02.044.

28.   Hanaura, H., Masukura, S., Nagatani, T. (2009). Traffic states induced by slowdown sections on two-lane highway. Physica A: Statistical Mechanics and its Applications, vol. 388 no. 7, 1196-1206, DOI: 10.1016/j.physa.2008.12.011

29.   Chowdhury, D., Wolf, D.E., Schreckenberg, M. (1997). Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications vol. 235, 417-439, DOI: 10.1016/S0378-4371(96)00314-7.

30.   Nagel, K. and Schreckenberg, M. (1992). A Cellular Automaton Model for Freeway Traffic. Journal de Physique I, vol. 2 no. 12, 2221-2229, DOI: 10.1051/jp1:1992277.

31.   Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M. (1999). Disorder effects in cellular automata for two-lane trafficPhysica A: Statistical Mechanics and its Applications, vol. 265 no. 3, 614-633, DOI: 10.1016/S0378-4371(98)00565-2.

32.   Lakouari, N., Bentaleb, K., Ez-Zahraouy, H., Benyoussef, A. (2015). Correlation velocities in heterogeneous bidirectional cellular automata traffic flow. Physica A: Statistical Mechanics and its Applications, vol. 439, 132-141, DOI: 10.1016/j.physa.2015.07.024.

33.   Zeng, J., Qian, Y., Lv, Z., Yin, F., Zhu, L., Zhang, Y., Xu, D. (2021). Expressway traffic flow under the combined bottleneck of accident and on-ramp in framework of Kerner’s three-phase traffic theory. Physica A: Statistical Mechanics and its Applications, vol. 574, 125918, DOI: 10.1016/j.physa.2021.125918.

34.   Chau, H.F., Hao, X., Liu, L.G. (2002). Exactly solvable single lane highway traffic model with tollbooths. Physica A: Statistical Mechanics and its Applications, vol. 303, 534–542, DOI: 10.1016/S0378-4371(01)00484-8.

35.   Fukui, M., Ishibashi, Y., (1996). Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed.  Journal of the Physical Society of Japan, vol. 65, 1868-1870, DOI: 10.1143/JPSJ.65.1868.

36.   Torok, J., Kertesz, J. (1996). The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam. Physica A: Statistical Mechanics and its Applications, vol. 231 no. 4, 515-533, DOI: 10.1016/0378-4371(96)00144-6.

37.   Ez-Zahraouy, H., Benrihane, Z., Benyoussef, A. (2004). The Effect of Off-ramp on the one-Dimensional Cellular Automaton Traffic Flow with Open Boundaries. International Journal of Modern Physics Bvol. 18 no. 16, 1793-6578, DOI: 10.1142/S021797920402610X.

38.   Jia, B., Jiang, R., Wu, Q.S. (2004). The traffic behaviors near an off-ramp in the cellular automaton traffic model. Physical Review E, vol. 69, 056105, DOI: 10.1103/PhysRevE.69.056105.

39.   Jia, B., Jiang, R., Wu, Q.S., Hu, M.B. (2005). Honk effect in the two-lane cellular automaton model for traffic flow. Physica A: Statistical Mechanics and its Applications, vol. 345, 544–552, DOI: 10.1016/j.physa.2004.09.034.

40.   Li, F., Zhang, X.Y., Gao, Z.Y. (2007). The effect of restricted velocity in the two-lane on-ramp system. Physica A: Statistical Mechanics and its Applications, vol. 374, 827–834, DOI: 10.1016/j.physa.2006.08.044.

41.   Song, Y.K., Zhao, X. M. (2009). Combined bottleneck effect of on-ramp and bus stop in a cellular automaton mode. Chinese Physics B, vol. 18, 5242, DOI: 10.1088/1674-1056/18/12/022.

42.   Marzoug, R., Echab, H., Ez-Zahraouy, H. (2017). Car accidents induced by a bottleneck. The European Physical Journal B, vol. 90, 240, DOI: 10.1140/epjb/e2017-70695-5.

43.   Rickert, M., Nagel, K., Schreckenberg, M., Latour, A. (1996). Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications, vol. 231, 534-550, DOI: 10.1016/0378-4371(95)00442-4.

44.   Boccara, N., Fuks, H., Zeng, Q. (1997). Car accidents and number of stopped cars due to road blockage on a one-lane highway. Physica A: Statistical Mechanics and its Applications, vol. 30, 3329–3332, DOI:   10.1088/0305-4470/30/10/012.

45.   Evans, M.R. (1996). Bose-Einstein condensation in disordered exclusion models and relation to traffic flow. Europhysics Letters, vol. 36 no. 1, 13–18, DOI: 10.1209/epl/i1996-00180-y.