Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

PERFORMANCE ANALYSIS OF FLAT WINGLET DEFLECTOR ON HYBRID SOLAR PV-WIND TURBINE SYSTEM: CASE STUDY ON TWISTED SAVONIUS TURBINE


DOI: 10.5937/jaes0-44759 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1168 pages: 69-80

Miftah Hijriawan
Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Zainal Arifin*
Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Dominicus Danardono Dwi Prija Tjahjana
Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Ilham Wahyu Kuncoro
Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

The harnessing of clean energy from solar and wind constitutes the foremost renewable energy source in Indonesia. The amalgamation of these energy modalities holds the promise of heightened energy efficiency coupled with reduced maintenance expenditures. This investigation endeavors to synergize wind turbines with photovoltaic (PV) solar panels in a hybrid configuration, capitalizing on the turbulent effluent from the wind turbine system as a cooling medium for the solar PV panels. Further studies are needed regarding the Solar PV-Wind Turbine hybrid cooling system, as a system needs to be designed to optimize the direction of airflow from the turbine as a cooling medium for the solar PV panels without compromising the turbine's performance. Experimental-scale modeling is implemented in this study, introducing a flat winglet deflector configuration to refine and optimize the airflow dynamics traversing the turbine, directed towards enhancing the performance of the integrated solar PV-Wind Turbine hybrid system. The results showed that the installation of solar PV panels and the addition of a flat winglet deflector configuration could improve the performance of the turbine. The highest Cp and Ct values obtained were 0.18476 and 0.66404 with an increased value of 21.74% and 20.56% respectively. Using the Taguchi method, the most optimal configuration for Cp is obtained for installing a PV solar panel with a height of 10cm with AoA for installing a flat winglet deflector of 5°. In the ANOVA analysis conducted, it is known that AoA has an effect of up to 71.57%, while the panel height has an effect of 24.69% with an error percentage of 3.73%.

View article

This research was supported by a grant from PPS-PTM with the title "Development of a Hybrid Solar PV-Wind Turbine System Configuration Using a Helix Type Savonius Turbine" with contract number 673.1/UN27.22/PT.01.03/2022 from the Ministry of Research, Technology and Higher Education, Republic of Indonesia.

1.      F. Dong, Y. Li, Y. Gao, J. Zhu, C. Qin, and X. Zhang, “Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries,” Resour. Conserv. Recycl., vol. 177, no. October 2021, p. 106002, 2022, doi: 10.1016/j.resconrec.2021.106002.

2.      W. Li, Z. Ji, and F. Dong, “Global renewable energy power generation efficiency evaluation and influencing factors analysis,” Sustain. Prod. Consum., vol. 33, pp. 438–453, 2022, doi: 10.1016/j.spc.2022.07.016.

3.      M. Shalby, A. A. Salah, G. A. Matarneh, A. Marashli, and M. R. Gommaa, “An investigation of a 3D printed micro-wind turbine for residential power production,” Int. J. Renew. Energy Dev., vol. 12, no. 3, pp. 550–559, 2023, doi: 10.14710/ijred.2023.52615.

4.      M. Shalby, A. Abuseif, M. R. Gomaa, A. Marashli, and H. Al-rawashdeh, “Assessment of Dust Properties in Ma ’ an Wind Farms in Southern,” vol. 16, no. 4, pp. 645–652, 2022.

5.      M. S. Javed, T. Ma, J. Jurasz, and M. Y. Amin, “Solar and wind power generation systems with pumped hydro storage: Review and future perspectives,” Renew. Energy, vol. 148, pp. 176–192, 2020, doi: 10.1016/j.renene.2019.11.157.

6.      F. E. Ahmed, R. Hashaikeh, and N. Hilal, “Hybrid technologies: The future of energy efficient desalination – A review,” Desalination, vol. 495, no. August, p. 114659, 2020, doi: 10.1016/j.desal.2020.114659.

7.      D. H. Kumar, R. Krishna, M. D. Kumar, R. Pradhan, and M. Sreenivasan, “Harvesting energy from moving vehicles with single-axis solar tracking assisted hybrid wind turbine,” Mater. Today Proc., vol. 33, no. xxxx, pp. 326–332, 2020, doi: 10.1016/j.matpr.2020.04.116.

8.      A. M. Hemeida et al., “Optimum design of hybrid wind/PV energy system for remote area,” Ain Shams Eng. J., vol. 11, no. 1, pp. 11–23, 2020, doi: 10.1016/j.asej.2019.08.005.

9.      X. Xu, W. Hu, D. Cao, Q. Huang, C. Chen, and Z. Chen, “Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system,” Renew. Energy, vol. 147, pp. 1418–1431, 2020, doi: 10.1016/j.renene.2019.09.099.

10.   S. Bhattacharjee and S. Acharya, “Performative analysis of an eccentric solar-wind combined system for steady power yield,” Energy Convers. Manag., vol. 108, pp. 219–232, 2016, doi: 10.1016/j.enconman.2015.11.023.

11.   P. Yin, C. Cheng, H. Chen, and T. Wu, “Risk-aware optimal planning for a hybrid wind-solar farm,” Renew. Energy, vol. 157, pp. 290–302, 2020, doi: 10.1016/j.renene.2020.05.003.

12.   S. Barakat, H. Ibrahim, and A. A. Elbaset, “Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability , cost , and environmental aspects,” Sustain. Cities Soc., vol. 60, no. April, p. 102178, 2020, doi: 10.1016/j.scs.2020.102178.

13.   M. Talaat, M. A. Farahat, and M. H. Elkholy, “Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies,” Energy, vol. 170, pp. 668–682, 2019, doi: 10.1016/j.energy.2018.12.171.

14.   K. Doshi and V. S. K. V Harish, “Materials Today: Proceedings Analysis of a wind-PV battery hybrid renewable energy system for a dc microgrid,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.09.194.

15.   Y. He, M. Zhang, W. Li, J. Su, and K. Kase, “Feasibility of a new helical blade structure for a PV integrated wind turbine in a heat-driven swirling wind field,” Energy, vol. 185, pp. 585–598, 2019, doi: 10.1016/j.energy.2019.07.029.

16.   H. Bakir and A. A. Kulaksiz, “Engineering Science and Technology , an International Journal Modelling and voltage control of the solar-wind hybrid micro-grid with optimized STATCOM using GA and BFA,” Eng. Sci. Technol. an Int. J., vol. 23, no. 3, pp. 576–584, 2020, doi: 10.1016/j.jestch.2019.07.009.

17.   H. Belmili, R. Cheikh, T. Smail, N. Seddaoui, and R. W. Biara, “Study, design and manufacturing of hybrid vertical axis Savonius wind turbine for urban architecture,” Energy Procedia, vol. 136, pp. 330–335, 2017, doi: 10.1016/j.egypro.2017.10.389.

18.   A. Vergaerde, T. De Troyer, A. Carbo Molina, L. Standaert, and M. C. Runacres, “Design , manufacturing and validation of a vertical-axis wind turbine setup for wind tunnel tests,” J. Wind Eng. Ind. Aerodyn., vol. 193, no. March, 2019, doi: 10.1016/j.jweia.2019.103949.

19.   B. Hand and A. Cashman, “A review on the historical development of the lift-type vertical axis wind turbine: From onshore to off shore floating application,” Sustain. Energy Technol. Assessments, vol. 38, no. January, 2020, doi: 10.1016/j.seta.2020.100646.

20.   F. A. Khan, N. Pal, and S. H. Saeed, “Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies,” Renewable and Sustainable Energy Reviews, vol. 92. Elsevier Ltd, pp. 937–947, Sep. 2018. doi: 10.1016/j.rser.2018.04.107.

21.   K. H. Wong, W. T. Chong, S. C. Poh, Y. C. Shiah, N. L. Sukiman, and C. T. Wang, “3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine,” Renew. Energy, vol. 129, pp. 32–55, Dec. 2018, doi: 10.1016/J.RENENE.2018.05.085.

22.   K. H. Wong et al., “Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine,” Energy Convers. Manag., vol. 160, no. January, pp. 109–125, 2018, doi: 10.1016/j.enconman.2018.01.029.

23.   I. W. Kuncoro, Z. Arifin, E. P. Budiana, and M. Hijriawan, “Improvement Performance Twisted Savonius Wind Turbine on Hybrid System: Effect of Flat Plate Deflector Installation,” Int. J. Heat Technol., vol. 41, no. 3, pp. 742–748, 2023, doi: 10.18280/ijht.410330.

24.   N. Korprasertsak and T. Leephakpreeda, “Analysis and optimal design of wind boosters for Vertical Axis Wind Turbines at low wind speed,” J. Wind Eng. Ind. Aerodyn., vol. 159, no. October, pp. 9–18, 2016, doi: 10.1016/j.jweia.2016.10.007.

25.   C. J. Bai and W. C. Wang, “Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs),” Renew. Sustain. Energy Rev., vol. 63, pp. 506–519, 2016, doi: 10.1016/j.rser.2016.05.078.

26.   G. Abdalrahman, W. Melek, and F. S. Lien, “Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT),” Renew. Energy, vol. 114, pp. 1353–1362, 2017, doi: 10.1016/j.renene.2017.07.068.

27.   E. Pinheiro, F. Bandeiras, M. Gomes, P. Coelho, and J. Fernandes, “Performance analysis of wind generators and PV systems in industrial small-scale applications,” Renew. Sustain. Energy Rev., vol. 110, no. December 2018, pp. 392–401, 2019, doi: 10.1016/j.rser.2019.04.074.

28.   B. Patankar, R. Tyagi, D. Kiss, and A. B. Suma, “Evaluation of an Integrated Roof Wind Energy System for urban environments,” J. Phys. Conf. Ser., vol. 753, no. 10, 2016, doi: 10.1088/1742-6596/753/10/102007.

29.   A. Damak, Z. Driss, and M. S. Abid, “Experimental investigation of helical Savonius rotor with a twist of 180°,” Renew. Energy, vol. 52, pp. 136–142, 2013, doi: 10.1016/j.renene.2012.10.043.

30.   Z. Zhao, Y. Zheng, X. Xu, W. Liu, and G. Hu, “Research on the improvement of the performance of savonius rotor based on numerical study,” 2009 Int. Conf. Sustain. Power Gener. Supply, pp. 1–6, 2009, doi: 10.1109/SUPERGEN.2009.5348197.

31.   J.-J. Tan, P. Myler, and W.-A. Tan, “Investigation and Analysis on Racing Car Front Wings,” DEStech Trans. Eng. Technol. Res., 2017, doi: 10.12783/dtetr/mdm2016/4896.

32.   W. T. Chong et al., “Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design,” Appl. Energy, vol. 207, pp. 78–95, 2017, doi: 10.1016/j.apenergy.2017.06.099.

33.   REXCO, “RC-200SV-46,” 2020. http://www.bestwindsolar.com/product/RC-200SV-46.html (accessed Dec. 25, 2020).

34.   D. D. D. P. Tjahjana, Z. Arifin, S. Suyitno, W. E. Juwana, A. R. Prabowo, and C. Harsito, “Experimental study of the effect of slotted blades on the Savonius wind turbine performance,” Theor. Appl. Mech. Lett., vol. 11, no. 3, p. 100249, 2021, doi: 10.1016/j.taml.2021.100249.

35.   K. Rogowski and R. Maroński, “CFD computation of the savonius rotor,” J. Theor. Appl. Mech., vol. 53, no. 1, pp. 37–45, 2015, doi: 10.15632/jtam-pl.53.1.37.

36.   S. Das Karmakar and H. Chattopadhyay, “A review of augmentation methods to enhance the performance of vertical axis wind turbine,” Sustain. Energy Technol. Assessments, vol. 53, no. PA, p. 102469, 2022, doi: 10.1016/j.seta.2022.102469.

37.   A. Hesami, A. H. Nikseresht, and M. H. Mohamed, “Feasibility study of twin-rotor Savonius wind turbine incorporated with a wind-lens,” Ocean Eng., vol. 247, no. January, p. 110654, 2022, doi: 10.1016/j.oceaneng.2022.110654.

38.   B. A. Storti, J. J. Dorella, N. D. Roman, I. Peralta, and A. E. Albanesi, “Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach,” Energy, vol. 186, p. 115814, 2019, doi: 10.1016/j.energy.2019.07.144.

39.   G. A. A. Thuwis, R. De Breuker, M. M. Abdalla, and Z. Gürdal, “Aeroelastic tailoring using lamination parameters :Drag reduction of a Formula One rear wing,” Struct. Multidiscip. Optim., vol. 41, no. 4, pp. 637–646, 2010, doi: 10.1007/s00158-009-0437-6.

40.   S. Ganesan and B. Esakki, “Computational fluid dynamic analysis of an unmanned amphibious aerial vehicle for drag reduction,” Int. J. Intell. Unmanned Syst., vol. 8, no. 3, pp. 187–200, 2020, doi: 10.1108/IJIUS-01-2019-0003.

41.   A. S. Saad, I. I. El-Sharkawy, S. Ookawara, and M. Ahmed, “Performance enhancement of twisted-bladed Savonius vertical axis wind turbines,” Energy Convers. Manag., vol. 209, p. 112673, Apr. 2020, doi: 10.1016/j.enconman.2020.112673.

42.   A. S. Saad, A. Elwardany, I. I. El-Sharkawy, S. Ookawara, and M. Ahmed, “Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors,” Energy Convers. Manag., vol. 235, p. 114013, May 2021, doi: 10.1016/J.ENCONMAN.2021.114013.