DOI: 10.5937/jaes0-43646
This is an open access article distributed under the CC BY 4.0
Volume 22 article 1215 pages: 507-517
The purpose of the study was to develop the principles of the theory of robustness of reinforced concrete structural systems of buildings and structures with prestressed elements and methods of protecting them from progressive collapse under special impacts. To achieve this, the article presents the results of studies of monolithic reinforced concrete frames of multi-storey buildings and reinforced concrete frames, with prestressed elements in transcendent states caused by special effects, are given in the article. The current state of the problem of robustness of building frames under special impacts is considered. A method for calculating the reinforced concrete frame of a multi-storey building with prestressed elements has been developed and its static-dynamic deformation has been studied to determine the robustness parameter. The parameters of deformation and destruction of prestressed reinforced concrete multi-story frame frames of buildings under design and beyond design impacts are experimentally determined. The results of the experimental study of frame structures are compared with the results of studies of similar structures without prestressing. The obtained results of the study can be used in the development of methods for protecting the frames of multi-storey buildings from progressive collapse.
This work was supported by the Russian Science Foundation Grant No. 24-49-10010, https://rscf.ru//project/24–49-10010/
1. Trekin N. N, Kodysh, E. N., Kelasiev, N. G., Shmakov, S. D., Chaganov, A. B., Terehov, I. A. (2019) The improvement of protection methods from the progressive collapse of one-storey industrial buildings. J Phys Conf Ser., vol. 1425, no. 1, 012050. DOI:10.1088/1742-6596/1425/1/012050
2. Hammad K., Lofty I., Naiem M. (2021) Enhancing Progressive Collapse Resistance in Existing Buildings. Design and Construction of Smart Cities, p. 39-46. DOI:10.1007/978-3-030-64217-4_5
3. Azim I., Yang J., Bhatta S., Wang F., Liu Q. F. (2020) Factors influencing the progressive collapse resistance of RC frame structures. Journal of Building Engineering. vol. 27, 100986. DOI:10.1016/j.jobe.2019.100986
4. Forquin P., Chen W. (2017) An experimental investigation of the progressive collapse resistance of beam-column RC sub-assemblages. Construction and Building Materials, vol. 152, 1068-1084. DOI:10.1016/j.conbuildmat.2017.05.179
5. Alshaikh I. M. H., Bakar B. A., Alwesabi E. A., Akil H. M. (2020) Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, vol. 25, 881-900.
6. Savin S, Kolchunov V., Fedorova N., Tuyen Vu N. (2023) Experimental and numerical investigations of RC frame stability failure under a corner column removal scenario, Buildings, vol. 13, no. 4, 908. DOI:10.3390/buildings13040908
7. Travush, V.I., Fedorova, N.V. (2018) Survivability of structural systems of buildings with special effects. Magazine of Civil Engineering, vol. 81, no. 5, 73–80. Doi: 10.18720/MCE.81.8.
8. Sadek F., Bao Y., Main J. A., Lew H. S. (2020) Evaluation and enhancement of robustness for reinforced concrete buildings.Journal of Structural Engineering, vol. 148, no.1, 04021248. DOI:10.1061/(ASCE)ST.1943-541X.0003226
9. Praxedes C., Yuan X. X. (2022) Robustness-oriented optimal design for reinforced concrete frames considering the large uncertainty of progressive collapse threats. Structural Safety, vol. 94, 102139. DOI: 10.1016/j.strusafe.2021.102139
10. Lobanov S.L., Blednov D.A., Sorokin V.E. (2014) On the technology of automated assessment of the robustness and safety of Navy ships. Software products and systems, vol. 2, 131-135
11. Fedorova N.V., Savin S.Yu. (2021) Progressive collapse resistance of facilities experienced to localized structural damage - an analytical review. Building and Reconstruction, vol. 3, 76-108. DOI: 10.33979/2073-7416-2021-95-3-76-108
12. Kiakojouri F., Sheidaii M. R., De Biagi V., Chiaia B. (2021) Progressive collapse of structures: A discussion on annotated nomenclature. Structures, vol. 29, 1417-1423. DOI:10.1016/j.istruc.2020.12.006
13. Kiakojouri F., Zeinali E., Adam J. M., De Biagi, V. (2023) Experimental studies on the progressive collapse of building structures: A review and discussion on dynamic column removal techniques. Structures, vol. 57, 105059. DOI:10.1016/j.istruc.2023.105059
14. Travush V.I. Shapiro G.I. Kolchunov V.I. Leontyev E.V. Fedorova N.V. (2019) Design of protection of large-panel buildings from progressive collapse. Housing Construction, vol.3, 40-46. DOI: 10.31659/0044-4472-2019-3-40-46
15. Mohamed O., Al Khattab R., Mishra A., Isam F. (2019) Recommendations for reducing progressive collapse potential in flat slab structural systems. IOP Conference Series: Materials Science and Engineering, vol. 471, no. 5, 052069. DOI:10.1088/1757-899X/471/5/052069
16. Abdelwahed B. (2019) A review on building progressive collapse, survey and discussion. Case Studies in Construction Materials, vol. 11, e00264. DOI:10.1016/j.cscm.2019.e00264
17. Fedorova N. V., Iliushchenko T. A. (2019) Influence of pre-stressing over parameters of diagram of static-dynamic deformation of RC elements. IOP conference series: materials science and engineering, vol. 687, no. 3, 033033. DOI:10.1088/1757-899X/687/3/033033
18. Feng D. C., Shi H. R., Parisi F., Brunesi E., Wang C. L. (2021) Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures. Engineering Failure Analysis, vol. 129, 105683. DOI:10.1016/j.engfailanal.2021.105683
19. Yang T., Chen W., Han Z. (2020) Experimental Investigation of Progressive Collapse of Prestressed Concrete Frames after the Loss of Middle Column. Advances in Civil Engineering, vol. 5, 1-12. DOI:10.1155/2020/8219712
20. Kolchunov V., Iliushchenko T., Savin S. (2022) Deformation and failure of prestressed reinforced concrete frames in ultimate states. Vatin, N., Roshchina, S., Serdjuks, D. (eds), Proceedings of MPCPE 2021. Lecture Notes in Civil Engineering, Russia, Latvia, 41-53. DOI:10.1007/978-3-030-85236-8_4
21. Kolchunov V.I., Fedorova N.V., Savin S.Yu., Kovalev V.V., Iliushchenko T.A. (2019) Failure simulation of a RC multi-storey building frame with prestressed girders. Magazine of Civil Engineering, vol. 8, 155–162. DOI: 10.18720/MCE.92.13.
22. Fedorova N.V., Khalina T.A. (2017) Study of dynamic additional loads in reinforced concrete structural systems during sudden structural changes. Industrial and civil construction, vol. 5, 32-36.
23. Huang Y., Tao Y., Yi W., Zhou Y., Deng L. (2021) Numerical investigation on compressive arch action of prestressed concrete beam-column assemblies against progressive collapse. Journal of Building Engineering, vol. 44, 102991. DOI:10.1016/j.jobe.2021.102991
25. Korsun V., Kalmykov Y., Niedoriezov A., Korsun A. (2015) The influence of the initial concrete strength on its deformation under triaxial compression. Procedia engineering, vol. 117, 959-969. DOI:10.1016/j.proeng.2015.08.190
26. Yu J., Gan Y. P., Liu J. (2021) Numerical study of dynamic responses of reinforced concrete infilled frames subjected to progressive collapse. Advances in Structural Engineering, vol. 24, no. 4, 635-652. DOI:10.1177/1369433220965273
28. Mileikovsky I.E., Kolchunov V.I. (1995) An extraordinary mixed method for calculating frame systems with elements of solid and composite sections. Proceedings of universities. Construction, vol. 7–8, 32–37.
29. Fedorova N. V., Ngoc V. T. (2019) Deformation and failure of monolithic reinforced concrete frames under special actions. J Phys Conf Ser., vol. 1425, no. 1, 012033. DOI: 10.1088/1742-6596/1425/1/012033
30. Kolcunov V.I., Tuyen V.N., Korenkov P.A. (2020) Deformation and failure of a monolithic reinforced concrete frame under accidental actions. J Conf Ser: Materials Science and Engineering, vol. 753, 032037. DOI: 10.1088/1757-899X/753/3/032037
31. Bazant Z.P., Kwon Y.W. (1994) Failure of slender and stocky reinforced concrete columns: tests of size effect. Materials and Structures, vol. 27, 79-90