DOI: 10.5937/jaes0-48185
This is an open access article distributed under the CC BY 4.0
Volume 22 article 1221 pages: 564-572
This research explores the utilization of used oil as an alternative fuel and investigates the impact of preheating on its performance in combustion chambers. The study employs an experimental approach to vary preheating methods, utilizing two models: a ring placed in the combustion chamber and a ring combined with a spiral between the inner and outer stove walls. A comparative analysis is conducted against conventional stoves. The investigation focuses on efficiency and flame temperature distribution. Results reveal that the stove incorporating the spiral-ring preheating model demonstrates the highest efficiency at 55.52%, marking a 9.76% increase over conventional stoves. Additionally, this model generates the largest average heat area and the highest temperatures, notably reaching 1077°C, with a broader area above 1000°C compared to other models. The preheating process aids in reducing fuel viscosity and enhancing evaporation, facilitating a more homogeneous air-fuel mixture, thereby promoting more complete combustion.
This research was supported by a Fundamental Research Grant from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, with contract No. 0557/E5.5/AL.04/2023..
1.
White, D. J., Burrowes, G.,
Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B., &
Whittaker, S. (2004). Greenhouse gas sequestration in abandoned oil reservoirs:
The International Energy Agency Weyburn pilot project. GSA Today, 14(77),
4–10. https://doi.org/10.1130/1052-5173(2004)014<004
>2.0.CO;2
2.
BP plc. (2020). BP
Statistical Review of World Energy 2020 (69th ed.). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
3.
U.S. Department of Energy.
(2020). International Energy Outlook 2020. U.S. Energy Information
Administration. https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf
4.
Abdullah, A. M., & Islam,
A. R. M. T. (2023). Current status of renewable energy in Bangladesh and future
prospects: A global comparison. Heliyon, 9(3), e14308.
https://doi.org/10.1016/j.heliyon.2023.e14308
5.
Clerici, A., & Alimonti, G.
(2015). World energy resources. EPJ Web of Conferences, 98, 1–15.
https://doi.org/10.1051/epjconf/20159801001
6.
Capuano, L. (2020). International
Energy Outlook 2020 (IEO2020): United States milestones in meeting global
energy consumption. U.S. Energy Information Administration. https://www.eia.gov/outlooks/ieo/pdf/ieo2020.pdf
7.
Jessam, R. A. (2022).
Experimental study of wind turbine power generation utilizing discharged air of
air conditioner blower. EVERGREEN Joint Journal of Novel Carbon Resource
Sciences & Green Asia Strategy, 9(4), 1103–1109.
https://doi.org/10.5109/6625722
8.
Kusnandar, V. B. (2022, June
10). Indonesian energy consumption by sector. Databoks. https://databoks.katadata.co.id/datapublish/2022/06/10/ini-sektor-dengan-konsumsi-energi-terbesar-di-ri-pada-2021
9.
Badan Pusat Statistik. (2021). Energy
balances of Indonesia 2016–2020. https://www.bps.go.id/en/publication/2021/12/16/349e26e73429084dc3c0663d/energy-balances-of-indonesia-2016-2020.html
10.
Crabbe, E., Nolasco, H. C.,
Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel production
from crude palm oil and evaluation of butanol extraction and fuel properties. Process
Biochemistry, 37(1), 65–71. https://doi.org/10.1016/S0032-9592(01)00178-9
11.
Susilawati, Zamzami, R., &
Buchori, A. S. (2020). The utilization of waste cooking oil (WCO) in a simple
stove as an alternative fuel for household scale. Journal of Physics:
Conference Series, 1700(1), 1–5.
https://doi.org/10.1088/1742-6596/1700/1/012052
12.
Ramadhan, G. W., &
Basyirun, B. (2020). The effect of air pressure on the burning temperature of
used oil in stoves. Jurnal
Dinamika Vokasional Teknik Mesin, 5(2), 163–168. https://doi.org/10.21831/dinamika.v5i2.34804
13.
Nugroho,
A. S., Rahayu, A. T., & Rubiandana, N. A. (2021). Experimental
study of the effect of nozzle diameter on fuel combustion. Jurnal Mesin
Industri & Otomotif, 2(2), 1–8. https://doi.org/10.46365/jmio.v2i02.435
14.
Dinesha,
P., Kumar, S., & Rosen, M. A. (2019). Performance
and emission analysis of a domestic wick stove using biofuel feedstock derived
from waste cooking oil and sesame oil. Renewable Energy, 136, 342–351.
https://doi.org/10.1016/j.renene.2018.12.118
15.
Sudarno, S., Soeparman, S.,
Wahyudi, S., & Widodo, A. S. (2021). Construction of a finned heat
radiation reflector for improved efficiency of liquefied petroleum gas stoves. International
Journal of Technology, 12(1), 163–174.
https://doi.org/10.14716/ijtech.v12i1.3958
16.
Widodo, A. S., Sudarno, S.,
Soeparman, S., & Wahyudi, S. (2022). The effect of finned heat reflector
materials and diameters on the efficiency and temperature distribution of
liquefied petroleum gas stove. Results in Engineering, 16, 100658.
https://doi.org/10.1016/j.rineng.2022.100658
17.
Sudarno, S., Soeparman, S.,
Wahyudi, S., & Widodo, A. S. (2021). Effect of the ember element in
increasing the efficiency of liquefied petroleum gas stoves. Journal of
Applied Engineering Science, 19(2), 1–8.
https://doi.org/10.5937/jaes0-28385
18.
World Bank. (1985). Test
results on kerosene and other stoves for developing countries. http://documents.worldbank.org/curated/en/647871492128395293
19.
U.S. Environmental Protection
Agency. (2014). The water boiling test (Version 4.2.3). International
Workshop Agreement. https://cleancookstoves.org/our-work/standards-and-testing/learn-about-testing-protocols/
20.
Waluyo, J., Setianto, M. M.,
Safitri, N. R., Pranolo, S. H., Susanti, A. D., & Puryanto. (2023).
Characterization of biochar briquettes from coconut shell with the effect of
binder: Molasses, cow manure, and horse manure. EVERGREEN Joint Journal of
Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 539–545.
https://doi.org/10.5109/6782158
21.
Raman, P., Murali, J.,
Sakthivadivel, D., & Vigneswaran, V. S. (2013). Performance evaluation of
three types of forced draft biomass cookstoves. Energy for Sustainable
Development, 17(5), 497–506. https://doi.org/10.1016/j.esd.2013.05.007
22.
Kartika,
A., Kurniawan, A., & Krensa, A. (2023). Analysis of
the temperature effect on the liquid's viscosity. Jurnal Penelitian dan
Pembelajaran Fisika Indonesia, 5(1), 25–30.
https://doi.org/10.29303/jppfi.v5i1.214
23.
Wenhao, Z. (2021). Influence of
temperature and concentration on viscosity of complex fluids. Journal of
Physics: Conference Series, 1965(1), 012064.
https://doi.org/10.1088/1742-6596/1965/1/012064
24.
Zheng,
F., Zhou, S., Xie, F., & Li, X. (2012). Analysis on
lubricating and viscosity-temperature characteristics of the vegetable oil. Applied
Mechanics and Materials, 184–185, 1451–1454.
https://doi.org/10.4028/www.scientific.net/AMM.184-185.1451
25.
Najib, A. I., Raid, A. A.,
Mazlan, A. W., Aminuddin, S., & Mohammed, B. A. (2023). Effect of
preheating on combustion characteristics of a swirling flameless combustor. AIP
Conference Proceedings, 2749(1). https://doi.org/10.1063/5.0136486
26.
MacCarty, N., Still, D., &
Ogle, D. (2010). Fuel use and emissions performance of fifty cooking stoves in
the laboratory and related benchmarks of performance. *Energy for Sustainable
Development, 14*(3), 161-171. https://doi.org/10.1016/j.esd.2010.06.002
27.
Almosawi, Y. J. K., &
Alshimmary, W. A. K. (2021). Effect of air combustion preheater on furnace
efficiency by using refinery simulator. *Journal of Petroleum Research and
Studies, 7*(3), 75–87. https://doi.org/10.52716/jprs.v7i3.161
28.
Ram, T., Santosh, B., &
Subhash, L. (2020). Experimental investigation of effect of preheating of air
and exhaust gas recirculation on four-stroke diesel engine. *IOP Conference
Series: Materials Science and Engineering, 810*(1), 1-9. https://doi.org/10.1088/1757-899X/810/1/012032
29.
Mourad, M., & Noureldenn,
E. H. (2019). Benefits of exhaust gas energy for preheating biodiesel fuel to
enhance engine emissions and performance. *Journal of Mechanical and Energy
Engineering, 3*(2), 157–168. https://doi.org/10.30464/jmee.2019.3.2.157
30.
Nadir, Y. (2012). Effects
of intake air preheat and fuel blend ratio on a diesel engine operating on
biodiesel–methanol blends. *Fuel, 94*, 444-447.
https://doi.org/10.1016/j.fuel.2011.10.050
31.
Cengel,
Y. A., & Ghajar, A. J. (2015). *Heat and mass
transfer: Fundamentals and applications* (5th ed.). McGraw-Hill Education.
32.
Turns, S. R. (2011). *An
introduction to combustion: Concepts and applications* (3rd ed.). McGraw-Hill
Education.
33.
Jhessica, M. F., Joel, G. T.,
Vitor, D. C. A., & Camila, D. S. (2019). Biodiesel from waste frying oils:
Methods of production and purification. *Energy Conversion and Management,
184*, 205-218. https://doi.org/10.1016/j.enconman.2019.01.061
34.
John, B. H. (2018). *Internal
combustion engine fundamentals* (2nd ed.). McGraw Hill.