Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

THE EFFECT OF FUEL PREHEATing ON THE PERFORMANCE OF USED OIL FUEL STOVES


DOI: 10.5937/jaes0-48185 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1221 pages: 564-572

Sudarno Sudarno*
Universitas Muhammadiyah Ponorogo, Faculty of Engineering, Department of Mechanical Engineering, Ponorogo, Indonesia

Fadelan Fadelan
Universitas Muhammadiyah Ponorogo, Faculty of Engineering, Department of Mechanical Engineering, Ponorogo, Indonesia

Wisnu Aji Setyatinika
Universitas Muhammadiyah Ponorogo, Faculty of Engineering, Department of Mechanical Engineering, Ponorogo, Indonesia

Yoyok Winardi
Universitas Muhammadiyah Ponorogo, Faculty of Engineering, Department of Mechanical Engineering, Ponorogo, Indonesia

This research explores the utilization of used oil as an alternative fuel and investigates the impact of preheating on its performance in combustion chambers. The study employs an experimental approach to vary preheating methods, utilizing two models: a ring placed in the combustion chamber and a ring combined with a spiral between the inner and outer stove walls. A comparative analysis is conducted against conventional stoves. The investigation focuses on efficiency and flame temperature distribution. Results reveal that the stove incorporating the spiral-ring preheating model demonstrates the highest efficiency at 55.52%, marking a 9.76% increase over conventional stoves. Additionally, this model generates the largest average heat area and the highest temperatures, notably reaching 1077°C, with a broader area above 1000°C compared to other models. The preheating process aids in reducing fuel viscosity and enhancing evaporation, facilitating a more homogeneous air-fuel mixture, thereby promoting more complete combustion.

View article

This research was supported by a Fundamental Research Grant from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, with contract No. 0557/E5.5/AL.04/2023..

1.      White, D. J., Burrowes, G., Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B., & Whittaker, S. (2004). Greenhouse gas sequestration in abandoned oil reservoirs: The International Energy Agency Weyburn pilot project. GSA Today, 14(77), 4–10. https://doi.org/10.1130/1052-5173(2004)014<004     >2.0.CO;2

2.      BP plc. (2020). BP Statistical Review of World Energy 2020 (69th ed.). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf

3.      U.S. Department of Energy. (2020). International Energy Outlook 2020. U.S. Energy Information Administration. https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf

4.      Abdullah, A. M., & Islam, A. R. M. T. (2023). Current status of renewable energy in Bangladesh and future prospects: A global comparison. Heliyon, 9(3), e14308. https://doi.org/10.1016/j.heliyon.2023.e14308

5.      Clerici, A., & Alimonti, G. (2015). World energy resources. EPJ Web of Conferences, 98, 1–15. https://doi.org/10.1051/epjconf/20159801001

6.      Capuano, L. (2020). International Energy Outlook 2020 (IEO2020): United States milestones in meeting global energy consumption. U.S. Energy Information Administration. https://www.eia.gov/outlooks/ieo/pdf/ieo2020.pdf

7.      Jessam, R. A. (2022). Experimental study of wind turbine power generation utilizing discharged air of air conditioner blower. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(4), 1103–1109. https://doi.org/10.5109/6625722

8.      Kusnandar, V. B. (2022, June 10). Indonesian energy consumption by sector. Databoks. https://databoks.katadata.co.id/datapublish/2022/06/10/ini-sektor-dengan-konsumsi-energi-terbesar-di-ri-pada-2021

9.      Badan Pusat Statistik. (2021). Energy balances of Indonesia 2016–2020. https://www.bps.go.id/en/publication/2021/12/16/349e26e73429084dc3c0663d/energy-balances-of-indonesia-2016-2020.html

10.   Crabbe, E., Nolasco, H. C., Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 37(1), 65–71. https://doi.org/10.1016/S0032-9592(01)00178-9

11.   Susilawati, Zamzami, R., & Buchori, A. S. (2020). The utilization of waste cooking oil (WCO) in a simple stove as an alternative fuel for household scale. Journal of Physics: Conference Series, 1700(1), 1–5. https://doi.org/10.1088/1742-6596/1700/1/012052

12.   Ramadhan, G. W., & Basyirun, B. (2020). The effect of air pressure on the burning temperature of used oil in stoves. Jurnal Dinamika Vokasional Teknik Mesin, 5(2), 163–168. https://doi.org/10.21831/dinamika.v5i2.34804

13.   Nugroho, A. S., Rahayu, A. T., & Rubiandana, N. A. (2021). Experimental study of the effect of nozzle diameter on fuel combustion. Jurnal Mesin Industri & Otomotif, 2(2), 1–8. https://doi.org/10.46365/jmio.v2i02.435

14.   Dinesha, P., Kumar, S., & Rosen, M. A. (2019). Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil. Renewable Energy, 136, 342–351. https://doi.org/10.1016/j.renene.2018.12.118

15.   Sudarno, S., Soeparman, S., Wahyudi, S., & Widodo, A. S. (2021). Construction of a finned heat radiation reflector for improved efficiency of liquefied petroleum gas stoves. International Journal of Technology, 12(1), 163–174. https://doi.org/10.14716/ijtech.v12i1.3958

16.   Widodo, A. S., Sudarno, S., Soeparman, S., & Wahyudi, S. (2022). The effect of finned heat reflector materials and diameters on the efficiency and temperature distribution of liquefied petroleum gas stove. Results in Engineering, 16, 100658. https://doi.org/10.1016/j.rineng.2022.100658

17.   Sudarno, S., Soeparman, S., Wahyudi, S., & Widodo, A. S. (2021). Effect of the ember element in increasing the efficiency of liquefied petroleum gas stoves. Journal of Applied Engineering Science, 19(2), 1–8. https://doi.org/10.5937/jaes0-28385

18.   World Bank. (1985). Test results on kerosene and other stoves for developing countries. http://documents.worldbank.org/curated/en/647871492128395293

19.   U.S. Environmental Protection Agency. (2014). The water boiling test (Version 4.2.3). International Workshop Agreement. https://cleancookstoves.org/our-work/standards-and-testing/learn-about-testing-protocols/

20.   Waluyo, J., Setianto, M. M., Safitri, N. R., Pranolo, S. H., Susanti, A. D., & Puryanto. (2023). Characterization of biochar briquettes from coconut shell with the effect of binder: Molasses, cow manure, and horse manure. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 539–545. https://doi.org/10.5109/6782158

21.   Raman, P., Murali, J., Sakthivadivel, D., & Vigneswaran, V. S. (2013). Performance evaluation of three types of forced draft biomass cookstoves. Energy for Sustainable Development, 17(5), 497–506. https://doi.org/10.1016/j.esd.2013.05.007

22.   Kartika, A., Kurniawan, A., & Krensa, A. (2023). Analysis of the temperature effect on the liquid's viscosity. Jurnal Penelitian dan Pembelajaran Fisika Indonesia, 5(1), 25–30. https://doi.org/10.29303/jppfi.v5i1.214

23.   Wenhao, Z. (2021). Influence of temperature and concentration on viscosity of complex fluids. Journal of Physics: Conference Series, 1965(1), 012064. https://doi.org/10.1088/1742-6596/1965/1/012064

24.   Zheng, F., Zhou, S., Xie, F., & Li, X. (2012). Analysis on lubricating and viscosity-temperature characteristics of the vegetable oil. Applied Mechanics and Materials, 184–185, 1451–1454. https://doi.org/10.4028/www.scientific.net/AMM.184-185.1451

25.   Najib, A. I., Raid, A. A., Mazlan, A. W., Aminuddin, S., & Mohammed, B. A. (2023). Effect of preheating on combustion characteristics of a swirling flameless combustor. AIP Conference Proceedings, 2749(1). https://doi.org/10.1063/5.0136486

26.   MacCarty, N., Still, D., & Ogle, D. (2010). Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. *Energy for Sustainable Development, 14*(3), 161-171. https://doi.org/10.1016/j.esd.2010.06.002

27.   Almosawi, Y. J. K., & Alshimmary, W. A. K. (2021). Effect of air combustion preheater on furnace efficiency by using refinery simulator. *Journal of Petroleum Research and Studies, 7*(3), 75–87. https://doi.org/10.52716/jprs.v7i3.161

28.   Ram, T., Santosh, B., & Subhash, L. (2020). Experimental investigation of effect of preheating of air and exhaust gas recirculation on four-stroke diesel engine. *IOP Conference Series: Materials Science and Engineering, 810*(1), 1-9. https://doi.org/10.1088/1757-899X/810/1/012032

29.   Mourad, M., & Noureldenn, E. H. (2019). Benefits of exhaust gas energy for preheating biodiesel fuel to enhance engine emissions and performance. *Journal of Mechanical and Energy Engineering, 3*(2), 157–168. https://doi.org/10.30464/jmee.2019.3.2.157

30.    Nadir, Y. (2012). Effects of intake air preheat and fuel blend ratio on a diesel engine operating on biodiesel–methanol blends. *Fuel, 94*, 444-447. https://doi.org/10.1016/j.fuel.2011.10.050

31.   Cengel, Y. A., & Ghajar, A. J. (2015). *Heat and mass transfer: Fundamentals and applications* (5th ed.). McGraw-Hill Education.

32.   Turns, S. R. (2011). *An introduction to combustion: Concepts and applications* (3rd ed.). McGraw-Hill Education.

33.   Jhessica, M. F., Joel, G. T., Vitor, D. C. A., & Camila, D. S. (2019). Biodiesel from waste frying oils: Methods of production and purification. *Energy Conversion and Management, 184*, 205-218. https://doi.org/10.1016/j.enconman.2019.01.061

34.   John, B. H. (2018). *Internal combustion engine fundamentals* (2nd ed.). McGraw Hill.