Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

REVERSE ENGINEERing MODELing PROCESSing AND FABRICATION OF VORONOI PERFORATED ANKLE-FOOT ORTHOSIS


DOI: 10.5937/jaes0-48262 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1222 pages: 573-582

Zakki Fuadi Emzain*
Politeknik Negeri Malang, Department of Mechanical Engineering, Malang, Indonesia

AM. Mufarrih
Politeknik Negeri Malang, Department of Mechanical Engineering, Malang, Indonesia

Moh. Hartono
Politeknik Negeri Malang, Department of Mechanical Engineering, Malang, Indonesia

Nanang Qosim
Politeknik Negeri Malang, Department of Mechanical Engineering, Malang, Indonesia

Yusuf Dewantoro Herlambang
Politeknik Negeri Semarang, Department of Mechanical Engineering, Semarang, Indonesia

The ankle may not function optimally because of an ankle foot injury due to torn ligaments or foot drop, a post-stroke effect of hemiplegia. One treatment that can be done for sufferers of ankle foot injury and foot drop is using an ankle foot orthosis (AFO). Reverse engineering (RE) and additive manufacturing (AM) technologies can be utilized within the medical domain, specifically for producing prosthetic devices and orthoses that include optimal fit, lightweight characteristics, and cost-effectiveness. This study aims to create an optimized design for an ankle-foot orthosis by utilizing reverse engineering techniques, followed by an analysis of its performance using finite element simulation. The research process involved several key steps, namely 3D Scanning, CAD modeling, model analysis, and 3D printing. The findings of the model study after the implementation of Voronoi ventilation holes indicated that the highest equivalent stress observed in the model, with a shell element thickness of 1.4 mm, amounted to 21.12 MPa. This result represented an elevation of 11.74% compared to the model before introducing Voronoi ventilation holes. Nevertheless, there was a reduction in the model's mass by 20.3%, specifically from an initial weight of 400.86 grams to a final weight of 319.51 grams. On the contrary, despite a fall in the safety factor, it continues to be considered safe, with a value of 2.84.

View article

We would like to thank P3M Politeknik Negeri Malang for funding this research through SP DIPA– 023.18.2.677606/2023.

1.      Pourhoseingholi, E., Saeedi, H., (2021). Role of the newly designed Ankle Foot Orthosis on balance related parametersin drop foot post stroke patients, J. Bodyw. Mov. Ther., vol. 26, p. 501–504, DOI: 10.1016/j.jbmt.2020.11.022

2.      Choo, Y. J., Chang, M. C., (2021). Commonly used types and recent development of ankle-foot orthosis: A narrative review, Healthcare, vol. 9, no. 8, p. 1-11, DOI: 10.3390/healthcare9081046

3.      Chung, C. L., DIangelo, D. J., Powell, D. W., Paquette, M. R., (2020). Biomechanical comparison of a new dynamic ankle orthosis to a standard ankle-foot orthosis during walking, J. Biomech. Eng., vol. 142, no. 5, p. 1-7, DOI: 10.1115/1.4045549

4.      Totah, D., Menon, M., Hershinow, C. J., Barton, K., Gates, D. H., (2019).  The impact of ankle-foot orthosis stiffness on gait: a systematic literature review, Gait & Posture, vol. 69, p. 101–111, DOI: 10.1016/j.gaitpost.2019.01.020

5.      Chen, B., Zi, B., Zeng, Y., Qin, L., Liao, W. H., (2018). Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges. Mechatronics, vol. 53, p. 241–250. DOI: 10.1016/j.mechatronics.2018.06.014

6.      Vasiliauskaite, E., Ielapi, A., De Beule, M., Van Paepegem, W., Deckers, J. P., Vermandel, M., Forward, M., Plasschaert, F., (2019). A study on the efficacy of AFO stiffness prescriptions, Disabil. Rehabil. Assist. Technol., vol. 16, no. 1., p. 27-39, DOI: 10.1080/17483107.2019.1629114

7.      Choo, Y. J., Chang, M. C., (2021). Effectiveness of an ankle–foot orthosis on walking in patients with stroke: A systematic review and meta-analysis, Sci. Rep., vol. 11, no. 1, p. 1–12, DOI: 10.1038/s41598-021-95449-x

8.      Ielapi, A., Forward, M., De Beule, M., (2019). Computational and experimental evaluation of the mechanical properties of ankle foot orthoses: a literature review, Prosthet. Orthot. Int., vol. 43, no. 3, p. 339–348, DOI: 10.1177/0309364618824452

9.      Cárdenas, S. L. C., Guzmán A. A. L., Bautista J. A. R., Zavala A. H., (2018). A review in gait rehabilitation devices and applied control techniques. Disabil Rehabil Assist Technol., vol. 13, no. 8, p. 819–834, DOI: 10.1080/17483107.2018.1447611

10.   Zhou, C., Yang, Z., Li, K., Ye, X., (2022). Research and Development of Ankle–Foot Orthoses: A Review, Sensors, vol. 22, no. 17, p. 1-15, DOI: 10.3390/s22176596

11.   Li, C., Pisignano, D., Zhao, Y., Xue J., (2020). Advances in medical applications of additive manufacturing, Engineering, vol. 6, no. 11, p. 1222–1231, DOI: 10.1007/978-3-030-35876-1_6

12.   Kumar. R., Kumar, M., Chohan, J.S., (2021). The role of additive manufacturing for biomedical applications: A critical review. J Manuf Process, vol. 4, p. 828–850, DOI: 10.1016/j.jmapro.2021.02.022

13.   Young, K. J., Pierce, J. E., Zuniga, J. M., (2019). Assessment of body-powered 3D printed partial finger prostheses: a case study, 3D Print. Med., vol. 5, no. 1, p. 1–8, DOI: 10.1007/978-3-030-35876-1_6

14.   Choi, H., Seo, A., Lee, J., (2019). Mallet Finger Lattice Casts Using 3D Printing, J. Healthc. Eng., vol. 2019, p. 1-5, DOI: 10.1155/2019/4765043

15.   Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang, Y., Shen, Y., Huang, X., Qiao, L., Yang, J., Zhang, Y., Hua, Z., (2020). Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial, Clin. Rehabil., vol. 34, no. 2, p. 194–204, DOI: 10.1177/0269215519885174

16.   Rouf, S., Malik, A., Singh, N., Raina, A., Naveed, N., Siddiqui, M. I. H., Haq, M. I. U., (2022). Additive manufacturing technologies: Industrial and medical applications. Sustain Oper Comput., vol. 3, p. 258–274 DOI: 10.1016/j.susoc.2022.05.001

17.   Yadav G., Jain M.L., Gehlot V., (2021). Design and Analysis of Thermoplastic Polypropylene Ankle Foot Orthosis, J. Manuf. Eng., vol. 16, no. 3, p. 87–91, DOI: 10.37255/jme.v16i3pp087-091

18.   Abdalsadah, F. H., Hasan, F., Murtaza, Q., Khan, A. A., (2021). Design and manufacture of a custom ankle–foot orthoses using traditional manufacturing and fused deposition modeling, Prog. Addit. Manuf., vol. 6, no. 3, p. 555–570, DOI: 10.1007/s40964-021-00178-2

19.   Khan, S. F., Radzmi, I., (2021). Design and analysis of various thermoplastic for optimized ankle foot orthosis,” J. Phys. Conf. Ser., vol. 2051, no. 1, p. 87–91, DOI: 10.1088/1742-6596/2051/1/012034

20.   Kubasad, P. R., Gawande, V. A., Todeti, S. R., Kamat, Y. D., Vamshi, N., (2020). Design and analysis of a passive ankle foot orthosis by using transient structural method, in Journal of Physics: Conference Series, 2020, vol. 1706, no. 1, p. 1-12, DOI: 10.1088/1742-6596/1706/1/012203

21.   Raj, R., Dixit, A. R., Łukaszewski, K., Wichniarek, R., Rybarczyk, J., Kuczko, W., Górski, F., (2022). Numerical and Experimental Mechanical Analysis of Additively Manufactured Ankle–Foot Orthoses, Materials (Basel)., vol. 15, no. 17, p. 1-15, DOI: 10.3390/ma15176130

22.   Sutton, L., Moein, H., Rafiee, A., Madden, J. D. W., Menon, C., (2016). Design of an assistive wrist orthosis using conductive nylon actuators, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, p. 1074–1079, DOI: 10.1109/BIOROB.2016.7523774

23.   Ates, S., Mora-Moreno, I., Wessels, M., Stienen, A. H. A., (2015). Combined active wrist and hand orthosis for home use: Lessons learned, in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, p. 398–403, DOI: 10.1109/ICORR.2015.7281232

24.   Baglanis, A., (2022). Additive Manufacturing (AM) and Reverse Engineering (RE) in Orthopedic Applications: A Case Study in Total Elbow Arthroplasty (TEA). Dissertation, International Hellenic University, Greece.

25.   Anggoro, P. W., Tauviqirrahman, M., Jamari, J., Bayuseno, A. P., Bawono, B., Avelina, M.M., (2018). Computer-aided reverse engineering system in the design and production of orthotic insole shoes for patients with diabetes. Cogent Eng., vol. 5, no. 1, p. 1-20, DOI: 10.1080/23311916.2018.1470916

26.   Modi, Y. K., Khare, N., (2020). Patient-specific polyamide wrist splint using reverse engineering and selective laser sintering. Mater Technol., vol. 37, no. 2, p. 71–78, DOI: 10.1080/10667857.2020.1810926

27.   Emzain, Z. F., Qosim, N., Mufarrih, A. M., Hadi, S., (2022). Finite Element Analysis and Fabrication of Voronoi Perforated Wrist Hand Orthosis Based on Reverse Engineering Modelling Method, J. Appl. Eng. Technol. Sci., vol. 4, no. 1, p. 451–459, DOI: 10.37385/jaets.v4i1.1199

28.   Emzain, Z. F., Amrullah, U. S., Mufarrih, A., Qosim, N., Herlambang, Y. D., (2021). Design optimization of sleeve finger splint model using Finite Element Analysis, J. Polimesin, vol. 19, no. 2, p. 147–152, DOI: 10.30811/jpl.v19i2.2272

29.   Qosim, N., Monasari, R., Emzain, Z. F., Hakim, L., Sai’in, A., (2020). Finite Element Analysis of Miniplate for Post-Fracture Finger Rehabilitation Device, J Appl Eng Technol Sci., vol. 2, no. 1, p. 21–26, DOI: 10.37385/jaets.v2i1.160

30.   Mazzanti, V., Malagutti, L., Mollica, F., (2019). FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties, Polymers (Basel)., vol. 11, no. 7, p. 1-22, DOI: 10.3390/polym11071094

31.   Yang, Y. S., Emzain, Z. F., Huang, S. C., (2021). Biomechanical Evaluation of Dynamic Splint Based on Pulley Rotation Design for Management of Hand Spasticity, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, p. 683–689, DOI: 10.1109/TNSRE.2021.3068453