Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

REVIEW OF THE ADAPTIVE SWEDISH TRAFFIC CONFLICT TECHNIQUE: APPLICATIONS AND IMPLICATIONS FOR ROAD TRAFFIC SAFETY


DOI: 10.5937/jaes0-49458 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1224 pages: 593-603

Wahyu Arif Pratama
Universitas Muhammadiyah Yogyakarta, Department of Civil Engineering, Jalan Brawijaya, Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta, Indonesia

Noor Mahmudah*
Universitas Muhammadiyah Yogyakarta, Department of Civil Engineering, Jalan Brawijaya, Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta, Indonesia

The Swedish Traffic Conflicts Technique (STCT) is a systematic approach used to examine traffic conflicts, specifically emphasising the correlation between severe conflicts and accidents. It uses safety indicators such as average speed, post-encroachment time, deceleration rate, time to collision, and traffic flow size to evaluate the gravity of interactions between pedestrian and motorised vehicles. The development of the TCT has been significant, with studies highlighting the impact of speeding, inattentiveness, inadequate following distance, signal violations, drowsiness, excessive alcohol consumption, and reckless driving on road safety. The Adaptive STCT for road traffic safety is a significant area of research and development, aiming to enhance understanding of the global implementation and efficacy of the Adaptive Swedish TCT in enhancing road traffic safety. The STCT has been applied in various countries, including Sao Carlos, Nanjing, Ho Chi Minh City, and Qatar, and has shown significant development in identifying hazardous manoeuvres at urban intersections, facilitating the adoption of safer designs and efficient risk management measures. Nevertheless, research on the STCT's implementation on rural roads is limited; it highlights the need for further investigation and implementation in rural environments due to varying road safety issues.

View article

Our thanks and appreciation go to Assoc. Prof. Ghazwan Al-Haji, Associate Professor at Linkoping University as the Coordinator of ERASMUS+ CBHE PROJECT "ASIASAFE" funded by a grant from the European Union with contract number 618325-EPP-1-2020-1-SE-EPPKA2-CBHE-JP in collaboration with the Master of Civil Engineering Study Programme of Universitas Muhammadiyah Yogyakarta and the Institute for Research and Innovation (LRI) Universitas Muhammadiyah Yogyakarta.

1.      Baraskar, D. G. (2022). Study on road traffic multimodal simulation, comparative study on simulation software on intersection and its road safety audit. International Journal of Engineering Applied Sciences and Technology.

2.      Jarašūnienė, A., & Batarlienė, N. (2018). Analysis of road traffic safety increase using intelligent transport systems in Lithuania. Vision Zero for Sustainable Road Safety in Baltic Sea Region.

3.      Johnsson, C., Laureshyn, A., & Ceunynck, T. D. (2018). In search of surrogate safety indicators for vulnerable road users: A review of surrogate safety indicators. Transport Reviews, 38(6), 765-785. https://doi.org/10.1080/01441647.2018.1442888 

4.      Campbell, R. E., & King, L. E. (1970). Rural intersection investigation for the purpose of evaluating the General Motors traffic-conflicts technique. Highway Research Board Special Report (No. 107), 10.

5.      Sayed, T., & Zein, S. R. (1999). Traffic conflict standards for intersections. Transportation Planning and Technology, 22(4), 309-323. https://doi.org/10.1080/03081069908717634 

6.      Tarko, A. P. (2020). Traffic conflicts as crash surrogates.

7.      Chen, W.-H., et al. (2021). Prediction of rear-end conflict frequency using multiple-location traffic parameters. Accident Analysis & Prevention. https://doi.org/10.1016/j.aap.2021.106007 

8.      Gui-ping, X. (2006). The gray cluster theory method in evaluation of traffic safety based on traffic conflict technique at signal intersection. Journal of North China Institute of Science and Technology.

9.      Naidu, M. B., & Chhabra, R. S. (2018). Safety indicators for heterogeneous non-lane-based traffic: A case study at Outer Ring Road-Delhi. Indian Journal of Science and Technology, 11(10). https://doi.org/10.17485/ijst/2018/v11i10/103552 

10.   Peng, J. L., & Wang, D. (2011). Pre-warning information system of traffic safety. Advanced Materials Research. https://doi.org/10.4028/www.scientific.net/amr.368-373.3320 

11.   Zheng, L., Sayed, T., & Mannering, F. L. (2020). Modeling traffic conflicts for use in road safety analysis: A review of analytic methods and future directions. Analytic Methods in Accident Research, 100142. https://doi.org/10.1016/j.amar.2020.100142

12.   Soares, L. C., do Prado, H. A., Balaniuk, R., Ferneda, E., & Bortoli, A. D. (2018). Caracterização de acidentes rodoviários e as ações governamentais para a redução de mortes e lesões no trânsito. Revista Transporte y Territorio. https://doi.org/10.34096/rtt.i19.5331 

13.   Jasiūnienė, V., Pociūtė, G., Vaitkus, A., Ratkevičiūtė, K., & Pakalnis, A. (2018). Analysis and evaluation of trapezoidal speed humps and their impact on the driver. Baltic Journal of Road and Bridge Engineering. https://doi.org/10.7250/bjrbe.2018-13.404 

14.   Vaitkus, A., et al. (2017). Traffic calming measures: An evaluation of the effect on driving speed. Promet-Traffic & Transportation. https://doi.org/10.7307/ptt.v29i3.2265 

15.   Jakobowsky, C., Siebert, F., Schießl, C., Junghans, M., Dotzauer, M., & Dotzauer, M. (2021). Why so serious? - Comparing two traffic conflict techniques for assessing encounters in shared space. Transactions on Transport Sciences. https://doi.org/10.17605/osf.io/cztvn 

16.   Brown, G. (1994). Traffic conflicts for road user safety studies. Canadian Journal of Civil Engineering. https://doi.org/10.1139/l94-001 

17.   Kuang, Y., Qu, X., & Yan, Y. (2017). Will higher traffic flow lead to more traffic conflicts? A crash surrogate metric-based analysis. PLOS ONE. https://doi.org/10.1371/journal.pone.0182458 

18.   Paul, M. (2019). Safety assessment at unsignalized intersections using post-encroachment time's threshold: A sustainable solution for developing countries. Lecture Notes in Civil Engineering. https://doi.org/10.1007/978-981-13-7162-2_10 

19.   Bonela, S. R., & Kadali, B. R. (2022). Review of traffic safety evaluation at T-intersections using surrogate safety measures in developing countries context. IATSS Research. https://doi.org/10.1016/j.aap.2023.107380

20.   Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 41, 153-163.

21.   Zheng, L., & Sayed, T. (2019). Comparison of traffic conflict indicators for crash estimation using peak over threshold approach. Transportation Research Record. https://doi.org/10.1177/0361198119841556 

22.   Tak, S., Lee, D., Choi, S., & Yeo, H. (2017). Collision avoidance system with uni-directional communication for mitigating the adverse effects on following vehicles. WIT Transactions on the Built Environment. https://doi.org/10.2495/ut170361 

23.   Kim, H. S., Hwang, Y., Yoon, D., Choi, W., & Park, C. H. (2014). Driver workload characteristics analysis using EEG data from an urban road. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2014.2333750 

24.   Yoshino, K., Oka, N., Yamamoto, K., Takahashi, H., & Kato, T. (2013). Correlation of prefrontal cortical activation with changing vehicle speeds in actual driving: A vector-based functional near-infrared spectroscopy study. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2013.00895 

25.   Bulla-Cruz, L. A., Laureshyn, A., & Lyons, L. (2020). Event-based road safety assessment: A novel approach towards risk microsimulation in roundabouts. Measurement. https://doi.org/10.1016/j.measurement.2020.108192

26.  Hydén, C., & Linderholm, L. (1984). The Swedish traffic-conflicts technique. In Traffic safety and the environment (pp. 149-158). https://doi.org/10.1007/978-3-642-82109-7_12 

27.   Jian, L. (2010). Safety evaluation of signalized intersections using traffic conflict technique. Journal of Transport Information and Safety. https://doi.org/10.1016/j.jtis.2010.09.003 

28.   Sheykhfard, A., Haghighi, F., Papadimitriou, E., & van Gelder, P. (2021). Analysis of the occurrence and severity of vehicle-pedestrian conflicts in marked and unmarked crosswalks through naturalistic driving study. Transportation Research Part F: Traffic Psychology and Behaviour, 80, 64-82. https://doi.org/10.1016/j.trf.2020.11.008 

29.   Ling-jun, W. (2009). Evaluation of traffic safety at intersections based on traffic conflict technique. Journal of Hefei University of Technology, 32(2), 54-59.

30.   Golob, T. F., Recker, W. W., & Alvarez, V. M. (2004). Freeway safety as a function of traffic flow. Accident Analysis & Prevention, 36(4), 589-597. https://doi.org/10.1016/j.aap.2003.09.006 

31.   Xiao, X., & Wu, Z. (2015). Research review of the impacts of adverse weather on traffic flow index. In Proceedings of the 15th TRB Conference (pp. 1-12). https://doi.org/10.1061/9780784479292.288 

32.   Hauer, E. (2014). The art of regression modeling in road safety. Springer. https://doi.org/10.1007/978-3-319-12529-9 

33.   Laureshyn, A., & Varhelyi, A. (2018). The Swedish traffic conflict technique: Observer’s manual. Swedish National Road and Transport Research Institute.

34.   Elvik, R., Høye, A., Vaa, T., & Sørensen, M. (2009). The handbook of road safety measures (2nd ed.). Emerald Group Publishing. https://doi.org/10.1108/9781848552517 

35.   Amoros, E., Martin, J.-L., & Laumon, B. (2006). Under-reporting of road crash casualties in France. Accident Analysis & Prevention, 38(3), 627-635. https://doi.org/10.1016/j.aap.2005.11.006 

36.   Alsop, J. C., & Langley, J. D. (2001). Under-reporting of motor vehicle traffic crash victims in New Zealand. Accident Analysis & Prevention, 33(1), 1-10. https://doi.org/10.1016/s0001-4575(00)00049-x 

37.   Chin, H. C., & Quek, S. T. (1997). Measurement of traffic conflicts. Safety Science, 27(3), 169-182. https://doi.org/10.1016/s0925-7535(97)00041-6 

38.   Haque, M. M., Boyle, L. N., Essa, M., & Sayed, T. (2015). Simulated traffic conflicts: Do they accurately represent field-measured conflicts? Transportation Research Record, 2514(1), 36-44. https://doi.org/10.3141/2514-06 

39.   Sun, Z., Chen, Y., Wang, P., Fang, S., & Tang, B. (2021). Vision-based traffic conflict detection using trajectory learning and prediction. IEEE Access, 9, 86521-86531. https://doi.org/10.1109/access.2021.3061266 

40.   Cantisani, G., Moretti, L., & Barbosa, Y. D. A. (2019). Safety problems in urban cycling mobility: A quantitative risk analysis at urban intersections. Safety, 5(1), 6. https://doi.org/10.3390/safety5010006 

41.   Amare, V., & Smirnovs, J. (2021). Road traffic safety analysis of different junction types on the state roads. IOP Conference Series: Materials Science and Engineering, 1202(1), 012034. https://doi.org/10.1088/1757-899x/1202/1/012034 

42.   Sarkar, D. R., Rao, K. R., & Chatterjee, N. (2023). A review of surrogate safety measures on road safety at unsignalized intersections in developing countries. Accident Analysis & Prevention, 195, 107380. https://doi.org/10.1016/j.aap.2023.107380 

43.   Zhang, Y., Yao, D., Qiu, T. Z., & Peng, L. (2014). Scene-based pedestrian safety performance model in mixed traffic situation. IET Intelligent Transport Systems, 8(3), 186-192. https://doi.org/10.1049/iet-its.2013.0012 

44.   Young, W., Sobhani, A., Lenne, M. G., & Sarvi, M. (2014). Simulation of safety: A review of the state of the art in road safety simulation modelling. Accident Analysis & Prevention, 62, 1-14. https://doi.org/10.1016/j.aap.2014.01.008 

45.   Chaudhari, A., Gore, N., Arkatkar, S. S., Joshi, G., & Pulugurtha, S. S. (2020). Exploring pedestrian surrogate safety measures by road geometry at midblock crosswalks: A perspective under mixed traffic conditions. IATSS Research, 44(1), 12-24. https://doi.org/10.1016/j.iatssr.2020.06.001 

46.   Zheng, L., Ismail, K., & Meng, X. (2014). Traffic conflict techniques for road safety analysis: Open questions and some insights. Canadian Journal of Civil Engineering, 41(6), 633-641. https://doi.org/10.1139/cjce-2014-0045 

47.   Leledakis, A., Lindman, M., Östh, J., Wågström, L., Davidsson, J., & Jakobsson, L. (2021). A method for predicting crash configurations using counterfactual simulations and real-world data. Accident Analysis & Prevention, 155, 105932. https://doi.org/10.1016/j.aap.2020.105932 

48.   Hu, Y., Li, Y., Huang, H., Lee, J., Yuan, C., & Zou, G. (2021). A high-resolution trajectory data driven method for real-time evaluation of traffic safety. Accident Analysis & Prevention, 155, 106503. https://doi.org/10.1016/j.aap.2021.106503 

49.   Engstrom, J., Liu, S.-Y., DinparastDjadid, M., & Simoiu, C. (2022). Modeling road user response timing in naturalistic settings: A surprise-based framework. Accident Analysis & Prevention, 164, 107460. https://doi.org/10.1016/j.aap.2024.107460 

50.   Meirelles, R. L. M. (2003). Aplicação da técnica sueca de análise de conflitos de tráfego em cruzamentos críticos da cidade de São Carlos. Universidade de São Paulo. https://doi.org/10.11606/d.18.2017.tde-10072017-160241 

51.   Kocourek, J., & Padělek, T. (2016). Application of the traffic conflict technique in the Czech Republic. In Smart Cities Symposium Prague (SCSP) (pp. 1-7). https://doi.org/10.1109/scsp.2016.7501037 

52.   Li, S., Xiang, Q., Ma, Y., Gu, X., & Li, H. (2016). Crash risk prediction modeling based on the traffic conflict technique and a microscopic simulation for freeway interchange merging areas. International Journal of Environmental Research and Public Health, 13(11), 1157. https://doi.org/10.3390/ijerph13111157 

53.   Vuong, T. Q. (2017). Traffic conflict technique development for traffic safety evaluation under mixed traffic conditions of developing countries. Journal of Traffic and Transportation Engineering, 4(2), 83-93. https://doi.org/10.17265/2328-2142/2017.04.004

54.   Cafiso, S., Graziano, A. D., & Pappalardo, G. (2017). In-vehicle stereo vision system for identification of traffic conflicts between bus and pedestrian. Journal of Traffic and Transportation Engineering. https://doi.org/10.1016/j.jtte.2016.05.007 

55.   Meel, I. P., Vesper, A., Borsos, A., & Koren, C. (2017). Evaluation of the effects of auxiliary lanes on road traffic safety at downstream of U-turns. Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2017.05.186 

56.   Ghanim, M. S., & Shaaban, K. (2019). A case study for surrogate safety assessment model in predicting real-life conflicts. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-018-3326-8 

57.   Zheng, L., Sayed, T., & Tageldin, A. (2018). Before-after safety analysis using extreme value theory: A case of left-turn bay extension. Accident Analysis & Prevention. https://doi.org/10.1016/j.aap.2018.09.023 

58.   Zheng, L., & Sayed, T. (2019). Application of extreme value theory for before-after road safety analysis. Transportation Research Record. https://doi.org/10.1177/0361198119841555 

59.   Kusumastutie, N. S., & Rusmandani, P. (2019). A brief review: Traffic conflict techniques and the challenges of the studies in Indonesia. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201927003004 

60.   Uzondu, C., Jamson, S., & Lai, F. (2019). Investigating unsafe behaviours in traffic conflict situations: An observational study in Nigeria. Journal of Traffic and Transportation Engineering. https://doi.org/10.1016/j.jtte.2018.06.002 

61.   Romanowska, A., Jamroz, K., & Olszewski, P. (2019). Review of methods for assessing traffic conditions on basic motorway and expressway sections. Archives of Transport. https://doi.org/10.5604/01.3001.0014.0205 

62.   Otero-Niño, J. D. J., et al. (2019). Road safety assessment in preferential bus lanes through field analysis and microsimulation of traffic conflicts. Revista Facultad De Ingenieria-Universidad De Antioquia. https://doi.org/10.17533/udea.redin.n90a10 

63.   Qi, W., Wang, W., Shen, B., & Wu, J. (2020). A modified post encroachment time model of urban road merging area based on lane-change characteristics. IEEE Access. https://doi.org/10.1109/access.2020.2987959 

64.   Kizawi, A. (2021). Analysis of vehicle-pedestrian and bicyclist conflicts in Győr-Hungary using Swedish conflict technique. Acta Technica Jaurinensis. https://doi.org/10.14513/actatechjaur.00605 

65.   Formosa, N., Quddus, M., Papadoulis, A., & Timmis, A. (2022). Validating a traffic conflict prediction technique for motorways using a simulation approach. Sensors. https://doi.org/10.3390/s22020566 

66.   Swanson, J. M., et al. (2022). Observing pedestrian-vehicle traffic conflicts in school zones to evaluate the effectiveness of road safety interventions and reduce injuries in Ghana, Vietnam, and Mexico, 2019-2021. Journal of Injury and Violence Research. https://doi.org/10.5249/jivr.v14i3.1710 

67.   Xu, Z., & Chen, D. (2022). Detection method for all types of traffic conflicts in work zones. Sustainability. https://doi.org/10.3390/su142114159 

68.   Latif, M. (2021). Inservice road safety audit review of Toronto intersections. Ryerson University. https://doi.org/10.32920/ryerson.14649567 

69.   Arun, A., Haque, M., Chung, E., Bhaskar, A., Washington, S., & Sayed, T. (2021). A systematic mapping review of surrogate safety assessment using traffic conflict techniques. Accident Analysis & Prevention. https://doi.org/10.1016/j.aap.2021.106016 

70.   Suhadi, I., & Rangkuti, N. M. (2019). Analisa tingkat keselamatan lalu lintas pada persimpangan dengan metode traffic conflict technique (TCT). Journal of Civil Engineering, Building and Transportation. https://doi.org/10.31289/jcebt.v3i2.2701 

71.   Yu, J., & Wang, L. (2015). Traffic safety evaluation of urban road intersection based on grey clustering. International Conference on Industrial Technology. https://doi.org/10.2991/icitmi-15.2015.69 

72.   Yuan, Y., Yi, A., Wang, Y., & Chen, X. (2021). Research on technical model and method of urban road traffic accident and traffic conflict based on artificial intelligence. 2021 International Conference on Aviation Safety and Information Technology. https://doi.org/10.1145/3510858.3511416 

73.