Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

LONGITUDINAL VIBRATION ANALYSIS OF STRAIN GRADIENT ELASTIC BAR WITH VARIOUS BOUNDARY CONDITIONS


DOI: 10.5937/jaes0-51432 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1231 pages: 665-680

Vlasios Dimosthenis
Aristotle University of Thessaloniki, Faculty of Engineering, School of Civil Engineering, Hellas

In this paper, strain gradient elasticity (GradEla) is employed to investigate bar's longitudinal free vibration (LFV) behavior with several boundary conditions (BCs). The governing differential equation of motion for the bar is derived using Hamilton's principle. Various combinations of clamped, free, attached mass and/or spring BCs are used to solve it analytically. Notably, many of these solutions are the first in the literature for the gradient elastic bars. The effect of the internal length parameter, the modes, the attachments, the BCs, and the length of the bar is identified and assessed. It is concluded that the GradEla bar shows size-dependent and stiffer mechanical behavior compared with the classical one. Also, the presence of mass mainly decreases the longitudinal frequencies (LF) of bars, while the presence of the spring increases them. In addition, GradEla is applied to model a literature experiment demonstrating its applicability in real problems. Presenting these novel solutions and showcasing their effectiveness through experimental validation contributes to the advancement of understanding the use of GradEla theory in a wide range of longitudinal vibration (LV) problems of structural mechanics.

View article

1.      Papamichos, E. and Van Den Hoek, P.J. (1995). Size dependency of Castlegate and Berea sandstone hollow-cylinder strength on the basis of bifurcation theory. in 35th U.S. Symposium on Rock Mechanics, USRMS 1995.

2.      Papanastasiou, P.C. and Vardoulakis, I.G. (1989). Bifurcation analysis of deep boreholes: II. Scale effect. Int J Numer Anal Methods Geomech, vol. 13, no. 2, 183-198, doi: 10.1002/nag.1610130206.

3.      Cosserat, E. and Cosserat, F. (1909). Théorie des Corps déformables. Nature, vol. 81, no. 2072, 67-67, doi: 10.1038/081067a0.

4.      Mindlin, R.D. and Tiersten, H.F. (1962). Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal, vol. 11, no. 1, 415-448, doi: 10.1007/BF00253946.

5.      Toupin, R.A. (1962). Elastic materials with couple-stresses. Arch Ration Mech Anal, vol. 11, no. 1, 385-414, doi: 10.1007/BF00253945.

6.      Mindlin, R.D. (1964). Micro-structure in linear elasticity. Arch Ration Mech Anal, vol. 16, no. 1, 51-78, doi: 10.1007/BF00248490.

7.      Mindlin, R.D. (1965). Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct, vol. 1, no. 4, 417-438, doi: 10.1016/0020-7683(65)90006-5.

8.      Mindlin, R.D. and Eshel, N.N. (1968). On first strain-gradient theories in linear elasticity. Int J Solids Struct, vol. 4, no. 1, 100-124, doi: 10.1016/0020-7683(68)90036-X.

9.      Kröner, E. (1967). Elasticity theory of materials with long range cohesive forces. Int J Solids Struct, vol. 3, no. 5, 731-742, doi: 10.1016/0020-7683(67)90049-2.

10.   Eringen, A.C. and Edelen, D.G.B. (1972). On Nonlocal Elasticity. Int J Eng Sci, vol. 10, no. 3, 233-248, doi: https://doi.org/10.1016/0020-7225(72)90039-0.

11.   Eringen, A.C. (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys, vol. 54, no. 9, 4703-4710, doi: 10.1063/1.332803.

12.   Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P. (2002). Couple stress based strain gradient theory for elasticity. Int J Solids Struct, vol. 39, no. 10, 2731-2743, doi: 10.1016/S0020-7683(02)00152-X.

13.   Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P. (2003). Experiments and theory in strain gradient elasticity. J Mech Phys Solids, vol. 51, no. 8, 1477-1508, doi: 10.1016/S0022-5096(03)00053-X.

14.   Triantafyllidis, N. and Aifantis, E.C. (1986). A gradient approach to localization of deformation. I. Hyperelastic materials. J Elast, vol. 16, no. 3, 225-237, doi: 10.1007/BF00040814.

15.   Aifantis, E.C. (1992). On the role of gradients in the localization of deformation and fracture. Int J Eng Sci, vol. 30, no. 10, 1279-1299, doi: 10.1016/0020-7225(92)90141-3.

16.   Altan, S.B. and Aifantis, E.C. (1992). On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materiala, vol. 26, no. 2, 319-324, doi: 10.1016/0956-716X(92)90194-J.

17.   Altan, B.S., Evensen, H.A., Aifantis, E.C. (1996). Longitudinal vibrations of a beam: A gradient elasticity approach. Mech Res Commun, vol. 23, no. 1, 35-40, doi: 10.1016/0093-6413(95)00074-7.

18.   Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D., Beskos, D.E. (2002). Static and dynamic analysis of a gradient-elastic bar in tension. Archive of Applied Mechanics, vol. 72, no. 6–7, 483-497, doi: 10.1007/s00419-002-0231-z.

19.   Parisis, K., Dimosthenis, V., Kouris, L., Konstantinidis, A., Aifantis, E.C. (2022). A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity. Fractal and Fractional, vol. 6, no. 2, 84, doi: 10.3390/fractalfract6020084.

20.   Pisano, A.A. and Fuschi, P. (2003). Closed form solution for a nonlocal elastic bar in tension. Int J Solids Struct, vol. 40, no. 1, 13-23, doi: 10.1016/S0020-7683(02)00547-4.

21.   Aydogdu, M. (2009). Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E Low Dimens Syst Nanostruct, vol. 41, no. 5, 861-864, doi: 10.1016/j.physe.2009.01.007.

22.   Benvenuti, E. and Simone, A. (2013). One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mech Res Commun, vol. 48, 46-51, doi: 10.1016/j.mechrescom.2012.12.001.

23.   Zhu, X. and Li, L. (2017). On longitudinal dynamics of nanorods. Int J Eng Sci, vol. 120, 129-145, doi: 10.1016/j.ijengsci.2017.08.003.

24.   Numanoğlu, H.M., Akgöz, B., Civalek, O. (2018). On dynamic analysis of nanorods. Int J Eng Sci, vol. 130, 33-50, doi: 10.1016/j.ijengsci.2018.05.001.

25.   Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T. (2013). Longitudinal behavior of strain gradient bars. Int J Eng Sci, vol. 66–67, 44-59, doi: 10.1016/j.ijengsci.2013.02.005.

26.   Akgöz, B. and Civalek, O. (2014). Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. JVC/Journal of Vibration and Control, vol. 20, no. 4, 606-616, doi: 10.1177/1077546312463752.

27.   Aifantis, E.C. (1984). On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 106, no. 4, 326, doi: 10.1115/1.3225725.

28.   Aifantis, E.C. (1987). The physics of plastic deformation. Int J Plast, vol. 3, no. 3, 211-247, doi: 10.1016/0749-6419(87)90021-0.

29.   Ru, C.Q. and Aifantis, E.C. (1993). A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech, vol. 101, no. 1–4, 59-68, doi: 10.1007/BF01175597.

30.   Velasco, S., Román, F.L., White, J.A. (2010). A simple experiment for measuring bar longitudinal and flexural vibration frequencies. Am J Phys, vol. 78, no. 12, 1429-1432, doi: 10.1119/1.3493403.