With the increasing demand for electric vehicles (EVs), the maritime transportation of these vehicles has become commonplace. Nevertheless, transporting EVs via car carriers presents a potential fire hazard. Data from the National Transportation Safety Board (NTSB) indicates that in 2020, 52 recorded fires involving EVs in the United States. These fires may be attributed to various factors, including battery malfunctions, overcharging, and damage sustained during transit. Once ignited, these fires can spread rapidly due to the proximity of the vehicles and the limited firefighting resources available on board. Numerous fire incidents involving car carriers transporting EVs have prompted safety concerns and underscored the necessity for enhanced regulations and safety protocols in recent years. According to the National Transportation Safety Committee (NTSC), Indonesia has reported 34 fires on vessels from vehicle incidents since 2007. Consequently, this research aims to mitigate damage and ascertain whether existing extinguishing systems effectively extinguish EV fires or if new recommendations are warranted. This study employs the Fire Dynamic Simulator (FDS) program to simulate fire behaviour, smoke propagation, and extinguishing. The findings highlight the importance of reducing fire temperatures to below 70°C within 400 to 500 s, particularly in the recommended scenario 2, which involves utilizing dedicated EV confined spaces. Ultimately, this approach minimizes smoke dispersal and emphasizes the necessity of lower temperatures for effective firefighting measures and reducing damage severity.
The authors gratefully acknowledge financial support from the Institut Teknologi Sepuluh Nopember for this work under the Publication Writing and IPR Incentive Program (PPHKI) project scheme. The authors would also like to thank the Thunderhead Engineering for providing the academic license for the pyrosim version 2023.1.0426 application used to conduct the simulation.
1.
Aziz, M., Marcellino, Y., Rizki, I. A., Ikhwanuddin, S. A., &
Simatupang, J. W. (2020). Studi Analisis Perkembangan Teknologi Dan Dukungan
Pemerintah Indonesia Terkait Mobil Listrik. TESLA: Jurnal Teknik Elektro, 22(1), Article 1.
https://doi.org/10.24912/tesla.v22i1.7898
2.
IRENA. (2017). Renewable Energy
Prospects: Indonesia, a REmap Analysis. International Renewable Energy Agency
(IRENA). https://www.irena.org/remap
3.
Pribadi, A. (2023, April 3). Kebut
Program Kendaraan Listrik, Pemerintah Keluarkan Aturan Insentif PPN. ESDM.
https://www.esdm.go.id/id/media-center/arsip-berita/kebut-program-kendaraan-listrik-pemerintah-keluarkan-aturan-insentif-ppn
4.
Ini
Komitmen Indonesia Mencapai Net Zero Emission. (2023, April 3).
https://www.kemenkeu.go.id/informasi-publik/publikasi/berita-utama/Ini-Komitmen-Indonesia-Mencapai-Net-Zero-Emission
5.
Yong, J. Y.,
Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A
review of the state-of-the-art technologies of electric vehicles, their impacts
and prospects. Renewable and Sustainable Energy Reviews, 49, 365–385.
https://doi.org/10.1016/j.rser.2015.04.130
6.
Sun,
P., Bisschop, R., Niu, H., & Huang, X. (2020). A
Review of Battery Fires in Electric Vehicles. Fire Technology, 1–50.
https://doi.org/10.1007/s10694-019-00944-3
7.
Ghiji, M., Novozhilov, V.,
Moinuddin, K., Joseph, P., Burch, I., Suendermann, B., & Gamble, G. (2020).
A Review of Lithium-Ion Battery Fire Suppression. Energies, 13(19), Article 19.
https://doi.org/10.3390/en13195117
8.
Matteo, S. D. (2023). Fire Risk
of Electric Vehicles in Confined Spaces [Masters Degree]. Politecnico di
Torino.
9.
Valasek, L. (2013). The use of
PyroSim graphical user interface for FDS simulation of a cinema fire. International
Journal of Mathematics and Computers in Simulation, 7(3), 258–266.
10.
Gurning, C. (2016). Fire Risk
Assessment For Safety Plan On Kmp Port Link 3 Through Fire Dynamic Simulator—unpublished
report.
11.
Lisbona, D., & Snee, T.
(2011). A review of hazards associated with primary lithium and lithium-ion
batteries. Process Safety and Environmental Protection, 89(6), 434–442.
https://doi.org/10.1016/j.psep.2011.06.022
12.
Qi, W., Shapiro, J. G., Wu, Q.,
Yin, T., Gao, G., & Cui, D. (2017). Nanostructured anode materials for
lithium-ion batteries: Principle, recent progress and future perspectives. Journal
of Materials Chemistry A, 5(37), 19521–19540.
https://doi.org/10.1039/C7TA05283A
13.
Un, C., & Aydın, K. (2021).
Thermal Runaway and Fire Suppression Applications for Different Types of
Lithium Ion Batteries. Vehicles, 3(3), Article 3.
https://doi.org/10.3390/vehicles3030029
14.
Feng, X., Ouyang, M., Liu, X.,
Lu, L., Xia, Y., & He, X. (2018). Thermal runaway mechanism of lithium-ion
battery for electric vehicles: A review. Energy Storage Materials, 10, 246–267.
https://doi.org/10.1016/j.ensm.2017.05.013
15.
Ribière,
P., Grugeon, S., Morcrette, M., Boyanov, S., Laruelle, S., & Marlair, G.
(2012). Investigation on the fire-induced hazards of
Li-ion battery cells by fire calorimetry. Energy & Environmental Science, 5(1),
5271–5280. https://doi.org/10.1039/C1EE02218K
16.
Hynynen, J., Willstrand, O.,
Blomqvist, P., & Andersson, P. (2023). Analysis of combustion gases from
large-scale electric vehicle fire tests. Fire Safety Journal, 139, 103829.
https://doi.org/10.1016/j.firesaf.2023.103829
17.
Babrauskas, V., & Peacock,
R. (1992). Heat Release Rate: The Single Most Important Variable in Fire
Hazard. Fire Safety Journal, 18, 255–272.
https://doi.org/10.1016/0379-7112(92)90019-9
18.
Kim,
H.-J., & Lilley, D. G. (2000). Heat Release Rates
of Burning Items in Fires. American Institute of Aeronautics and Astronautics, 2000–0722.
19.
Hill, D. (2017). Considerations
for Energy Storage Systems (ESS) Fire Safety (p. 97). DET NORSKE VERITAS
(U.S.A.), INC. (DNV GL).
20.
Kong,
L., Li, C., Jiang, J., & Pecht, M. (2018). Li-Ion
Battery Fire Hazards and Safety Strategies. Energies, 11, 2191.
https://doi.org/10.3390/en11092191
21.
Larsson, C. F. (2017). Lithium-ion
Battery Safety—Assessment by Abuse Testing, Fluoride Gas Emissions and Fire
Propagation [Chalmers University of Technology].
https://research.chalmers.se/en/publication/251352
22.
Long, R. T., Blum, A. F.,
Bress, T. J., & Cotts, B. R. T. (2013). Best Practices for Emergency
Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on
Full-Scale Testing Results. National Fire Protection Research Foundation.
23.
Mikolajczak, C., Kahn, M.,
White, K., & Long, R. T. (2011). Lithium-Ion Batteries Hazard and Use
Assessment. Springer US. https://doi.org/10.1007/978-1-4614-3486-3
24.
Yuan,
S., Chang, C., Zhou, Y., Zhang, R., Zhang, J., Liu, Y., & Qian, X. (2022). The extinguishment mechanisms of a micelle encapsulator F-500 on
lithium-ion battery fires. Journal of Energy Storage, 55, 105186.
https://doi.org/10.1016/j.est.2022.105186
25.
Ha, G., Shin, W. G., & Lee,
J. (2021). Numerical analysis to determine fire suppression time for multiple
water mist nozzles in a large fire test compartment. Nuclear Engineering and
Technology, 53(4), 1157–1166. https://doi.org/10.1016/j.net.2020.09.028
26.
Khoat, H., Kim, J., Quoc, T.,
Kwark, J., & Ryou, H. (2020). A Numerical Analysis of the Fire
Characteristics after Sprinkler Activation in the Compartment Fire. Energies, 13,
3099. https://doi.org/10.3390/en13123099
27.
Kang,
S., Kwon, M., Yoon Choi, J., & Choi, S. (2023). Full-scale fire testing of
battery electric vehicles. Applied Energy, 332.
https://doi.org/10.1016/j.apenergy.2022.1204