DOI: 10.5937/jaes14-8229
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.
Volume 14 article 374 pages: 223-232
Compliant mechanisms
have made an enormous contribution in various fields. Several methods have
being conceived to analyze and design these compliant mechanisms that gain part
of their motion from the deflection of flexible members rather than from
movable joints only. Traditional rigidbody mechanisms have a number of
components to apply their functions. Consequently they face problems such as
backlash, wear, and increase in part-count, weight, assembly cost and time,
regular maintenance. By reducing these problems will assist in increasing
mechanism performance and cost reduction. Recently, many familiar examples of
compliant mechanisms have been designed and widely used in various fields such
as automotive industry, aerospace industry, MEMS, Medical devices, Robotic arm
with minimal impedance due to its own mass & assistive mechanisms. For
adaptive structures, components in transportations, hand-held tools, etc. however,
the largest challenge was relative difficulty in analyzing and designing
compliant mechanisms. Two approaches studied in the literature of
kinematics-based approach and the structural optimization based approach. At
present work is being carried out to analyze, the best suitable optimization method
for designing a compliant mechanisms used in new age industries.
Howell, L.L. (Eds.), 2001. Compliant Mechanisms. John Wiley & Sons,
Inc. United
States of America.
L. L. Howell and A. Midha. A method for
the design of compliant mechanisms with smalllength flexural pivots. ASME
Journal of Mechanical Design, 115:280–290, 1994.
M. D. Murphy, A. Midha, and L. L.
Howell. The topological synthesis of compliant mechanisms. Mechanism and
Machine Theory, 31:185–199, 1996.
G. K. Ananthasuresh. PhD Thesis. A New Design
Paradigm for Micro-Electro-Mechanical Systems and Investigations on the
Compliant Mechanism Synthesis. University Of Michigan, Ann Harbor, USA, 1994.
Canfield, S. and M. Fracker, 2000.
‘Topology Optimization of Compliant Mechanical Amplifiers’, Journal of Structural
Multidisc Optimization, 20: 269-279.
Anandhasuresh G.K. and A. Saxena, 2000.
‘On an Optimal Property of Compliant Topologies’, Journal of Structural
Multidisc Optimization, 19: 36-49.
Wang M.Y., S. Chen and Y. Mei, 2005.
‘Design of Multimaterial Compliant Mechanisms using Level-set Methods’, Journal
of Mechanical Design, 127: 941-956.
Ananthasuresh, G. K., Kota, S., and
Kikuchi, K., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,”
1994 Int. Mechanical Engineering Congress and Exposition, ASME, Chicago, IL,
55, pp. 677–686.
Frecker, M. I., Ananthasuresh, G. K., Nishiwaki, S., Kikuchi, N., and
Kota, S., 1997,
“Topological Synthesis of Compliant
Mechanisms Using Multi-Criteria Optimization,” J.Mech. Des., 119_2_, pp.
238–245.
Hetrick, J., and Kota, S., 1999, “An
Energy Formulation for Parametric Size and Shape Optimization of Compliant
Mechanisms,” J. Mech. Des., 121, pp. 229–234.
Joo, J., Kota, S., and Kikuchi, N.,
2000, “Topological Synthesis of Compliant Mechanisms Using Linear Beam
Elements,” Mech. Based Des. Struct. ach., 28_4_, pp. 245–280.
Mortensen, C.R., B.L. Weight, L.L.
Howell and S.P. Magleby, 2000. Compliant mechanism prototyping. In: Proc. of
DETC’00, ASME 2000 Design Engineering Technical Conferences & Computers
& Information in Engineering Conference Baltimore, Maryland.
Larsen, U.D., O. Sigmund and S.
Bouwstra, 1997. Design and fabrication of compliant micromechanisms and
structures with negative poisson’s ratio. J. Microelectromech. Syst., 6: 99-
106.
Chen, L., 2001. Microfabrication of
heterogeneous, optimized compliant mechanisms. NSF Summer Undergraduate
Fellowship in Sensor Technologies (SUNFEST 2001), University of Rochester,
Advisor, G.K. Ananthasuresh.
Sigmund, O., 1997. On the design of
compliant mechanisms using topology optimization. Mech. Struct. & Machines,
25: 493-524.
Solehuddin, S., A. Jamaluddin, M.
Abd.Samad and A.M. Nizam, 2002. A novel design of a compliant one-piece nail
clipper. In: Proc. of the 2nd World Engineering Congress,2002 WEC.
Howell, L.L. and A. Midha, 1996. A
loop-closure theory for the analysis and synthesis of compliant mechanisms. SME
J. Mech. Design, 118: 121- 125.
Ananthasuresh, G.K., S. Kota and Y. Gianchandani, 1994. A methodical
approach
to the synthesis of micro-compliant
mechanisms. Tech. Digest, Solid-State Sensor and Actuator Workshop (held on
Hilton Head Island, SC), pp: 189-192.
Saxena, A. and G.K. Ananthasuresh,
1998. An optimality criteria approach for the topology synthesis of compliant
mechanisms. In: Proc. Of DETC’98, ASME Design, Engineering Technical Conf.
(held in Atlanta, GA), DETC’98/MECH5937.
Saxena, A. and G.K. Ananthasuresh,
2000. On an optimal property of compliant topolo- gies.
Struct. Multidisc. Optim., 19: 36-49.
Sigmund, O., 2000. Topology
optimisation: A tool for the tailoring of structures and materials. Phil.
Trans. R. Soc. Lond. A, 358: 211-227.
Frecker, M.I., 1997. Optimal design of
compliant mechanisms. Ph. D. Thesis, Mechanical Engineering in the University
of Michigan.
Canfield, S. and M. Frecker, 2000.
Topology optimisation of compliant mechanical amplifiers for piezoelectric
actuators. Struct. Multidisc. Optim., 20: 269-279.
Pedersen, C.B.W., 2002. Topology
optimisation of energy absorbing frames. In: Proc. Of WCCM V, 5th World
Congress on Computational Mechanics.
Ansola, R., J. Canales, J.A. Tarrago
and J. Rasmussen, 2002. On simultaneous shape and material layout optimisation
of shell structures. Struct. Multidisc. Optim., 24: 175- 184.
Li, Y., K. Saito and N. Kikuchi, 2002.
Design of heat-actuated compliant mechanism and its application to
product-embedded disassembly. In: Proc. 5th World Congress on Computational
Mechanics (WCCM V), Vienna, Austria.
Nishiwaki, S., M.I. Frecker, S. Min and
N. Kikuchi, 1998. Topology optimisation of compliant mechanisms using the
homogenization method. Int. J. Numer. Meth. Engng., 42: 535-559.
Hammer, V.B. and N. Olhoff, 2000.
Topology optimisation of continuum structures subjected to pressure loading.
Struct. Multidisc. Optim., 19: 85- 92.
Pedersen, C.B.W., T. Buhl and O.
Sigmund, 2001. Topology synthesis of large-displacement compliant mechanisms.
Int. J. Numer. Meth. Engng., 50: 2683-2705.
Frecker, M., S. Kota and N. Kikuchi,
1999. Topology optimisation of compliant mechanisms with multiple outputs.
Struct. Optim., 17: 269-278.
Fuchs, M.B. and E. Moses, 2000. Optimal
structural topologies with transmissible loads. Struct. Multidisc. Optim., 19:
263-273.
Allaire, G. and C. Castro, 2002.
Optimisation of nuclear fuel reloading by the homogenisation. Struct.
Multidisc. Optim., 24: 11-22.
Chen, T.Y. and C.Y. Lin, 2000.
Determination of optimum design spaces for topology optimization. Finite
Elements in Analysis and Design, 36: 1-16.
Borrvall, T. and J. Petersson, 2001.
Topology optimisation using relularized intermediate density control. Comput..
Methods Appl. Mech. Engrg., 190: 4911-4928.Stolpe, M. and Svanberg, K. 2001,
“On the Trajectories of Penalization Methods for Topology Optimisation”, Struct.
Multidisc Optim Vol. 21, pp.128-139.
Stolpe, M. and K. Svanberg, 2001. An
alternative interpolation scheme for minimum compliance topology optimization.
Struct. Multidisc. Optim., 22: 116-124.
Hsu, Y.L., M.S. Hsu and C.T. Chen, 2001. Interpreting results from
topology optimization using density contours. Computers & Structures, 79:
1049-1058.
Bulman, S., J. Sienz and E. Hinton,
2001. Comparisons between algorithms for structural topology optimisation using
a series of benchmark studies. Computers & Structures,79: 1203-1218.
Salman, B.A., 1989, “Mechanical
Advantage Aspects in Compliant Mechanisms Design,” M.S. thesis, Purdue
University, West Lafayette,IN.
Burns, R.H., 1964, “The Kinetostatic
Synthesis of Flexible Link Mechanisms,” Ph.D. dissertation, Yale University,
New Haven. CT.
Burns, R.H., and Crossley, F.R.E., 1968, “Kinetostatics Synthesis of
Flexible Link
Mechanisms,” ASME Paper 68-Mech-5.
Howell, L.l.., and Midha, A., 1993,
“Compliant Mechanisms,” Section 9.10 in Modern Kinematics: Developments in the
last Forty Years, (A.G. Erdman, ed), Wiley, New York, pp. 422-428.
K. Schittkowski. Optimization in
industrial engineering: Sqp - methods and applications. RadiossUser Meeting,
Mecalog, Nice, 2005.
Belegundu, A. and T. Chadruparla, 1999.
‘Optimization Concepts and Applications in Engineering’, Upper Saddle River,
New Jersey, Prentice Hall Publications.
A. Remouchamps and Y. Radovcic. Boss quattro: an open system for
parametric design. JournalStructural and Multidisciplinary Optimization,
23:140–152, 2002
Deepak, R., M. Dinesh, D.K. Sahu and
G.K. Ananthasuresh, 2009. ‘A Comparative Study of the Formulations and Benchmark
Problems for the Topology Optimization of Compliant Mechanisms’, Journal of
Mechanisms and Robotics, 1: 215-222.
Frecker, M. and S. Kota, 1997. ‘Topological Synthesis of Compliant
Mechanisms
Using Multi-Criteria Optimization’, Journal of Mechanical Design,
Transaction
of ASME, 119: 238-245.
Kikuchi, N. and S. Nishiwaki,1998. ‘Design
Optimization method for Compliant Mechanisms and Material Microstructure’,
Journal of Computer Methods in Applied Mechanics and Engineering, 151: 401-417.
Bendsoe, M.P. and N. Kikuchi, 1998. ‘Generating
Optimal Topologies in Structural Design Using a Homogenization Method’, Journal
of Computer Methods in Applied Mechanics and Engineering, 71: 197-224.
Hetric, J.A. and S. Kota, 1999. ‘An
Energy Formulation for Parametric Size
and Shape Optimization of Compliant
Mechanisms’, ASME Journal of Mechanical Design, 121: 229-234.
K. J. Lu and S. Kota. An effective method of synthesizing compliant
adaptive
structures using load path representation. Journal
of Intelligent Systems and Structures, 16:307–317, 2005.