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LONGITUDINAL VIBRATION ANALYSIS OF STRAIN GRADIENT 
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In this paper, strain gradient elasticity (GradEla) is employed to investigate bar's longitudinal free vibration (LFV) 
behavior with several boundary conditions (BCs). The governing differential equation of motion for the bar is derived 
using Hamilton's principle. Various combinations of clamped, free, attached mass and/or spring BCs are used to 
solve it analytically. Notably, many of these solutions are the first in the literature for the gradient elastic bars. The 
effect of the internal length parameter, the modes, the attachments, the BCs, and the length of the bar is identified 
and assessed. It is concluded that the GradEla bar shows size-dependent and stiffer mechanical behavior compared 
with the classical one. Also, the presence of mass mainly decreases the longitudinal frequencies (LF) of bars, while 
the presence of the spring increases them. In addition, GradEla is applied to model a literature experiment 
demonstrating its applicability in real problems. Presenting these novel solutions and showcasing their effectiveness 
through experimental validation contributes to the advancement of understanding the use of GradEla theory in a wide 
range of longitudinal vibration (LV) problems of structural mechanics. 

Keywords: longitudinal free vibration, bar, strain gradient elasticity, GradEla, boundary conditions 

1 INTRODUCTION 

The classical theory of elasticity is used in many engineering problems and applications. Over the years, the scale 
of the problems ranged from meters to nano-scale dimensions. In this nano-scale region, the mechanical behavior 
of materials is different from their behavior at macro-scales because the microstructural effects are significant. In 
addition, in the macro-scale region, there are cases where the macroscopic behavior is significantly affected by the 
microstructure of the material [1-2]. However, classical theory neglects the effect of microstructure and cannot predict 
its mechanical response correctly.  

To deal with that problem, higher-order theories appeared. Like couple stress theories [3-5], strain gradient theories 
[6-8], nonlocal theories [9-11], and more recently modifications of them [12-13]. The insert of internal length scale 
parameters in the constitutive equations of classical theories can describe the materials' microstructure and size 
effects. 

Aifantis and coworkers suggested a simple strain gradient model with only one additional constant in elasticity [14-
16], widely known as GradEla. The linearized version of the stress-strain relation amounts to adding the Laplacian 
of the classical stress/strain expression into the standard form of Hooke's law and contains only one internal length-
scale parameter, making the approach more convenient to be employed from physical and mathematical points of 
view. 

Many researchers have used higher-order theories for solving bar problems. Following the GradEla theory, static and 
dynamic analysis of a bar has been studied by Altan et al. [17], Tsepoura et al. [18], and Parisis et al. [19]. Following 
the nonlocal theory of Eringen, the mechanical response of bars has been studied by Pisano and Fuschi [20], 
Aydogdu [21], Benvenuti and Simone [22], and Zhu and Li [23]. Numanuglu et al. [24] studied the LFVs of bars with 
several BCs according to Eringen’s theory, in which the governing equations have the same order as the classical 
ones, and thus to find the solutions it follows the way of the classical theory. Kahrobaiyan et al. [25] and Akgoz and 
Civalek [26] studied the static and free vibration behavior of bars according to the modified gradient elasticity theory 
of Lam et al. [13]. However, to the authors' knowledge, no one studied the LFV behavior of the bar with various BCs, 
like attached mass and/or spring, using the GradEla theory, in which governing equations are of a higher-order, than 
the classical ones, making the use of higher-order BCs essential. 

This paper investigates the LFV behavior of bars with various BCs based on the GradEla theory. The governing 
equation of motion is derived via Hamilton's principle. Several cases are solved with different combinations of BCs, 
like clamped, free, attached mass and/or spring, and the effects of internal length parameter, modes, attachments, 
BCs, and length on the frequencies of the bar are investigated and compared with the classical bar model. The 
GradEla theory is also used to model an experiment found in the literature, showcasing its applicability to real 
engineering problems.  

The paper is organised as follows: In Section 2, the GradEla is introduced along with the equation of motion of the 
GradEla bar model, and it is studied its LFV behavior. In Section 3, a couple of case studies with different BCs are 
solved and discussed. Finally, conclusions are made in Section 4. 
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2 MATERIALS AND METHODS 

2.1 GradEla theory 

One of the most popular gradient elasticity theories is due to Aifantis and coworkers in the early 1990s, widely known 
as GradEla. Motivated by earlier work in plasticity [27-28] and nonlinear elasticity [14], Aifantis and coworkers 
suggested extending the linear elastic constitutive relations with the Laplacian of the strain as below [15-16,29]: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − ℓ2𝜀𝑘𝑙,𝑚𝑚)                                                                                    (1) 

where ℓ is again a length scale parameter of the material. 

The strain energy density function, 𝑈, for isotropic, linearly elastic material reads: 

𝑈 =
1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 + ℓ2 (

1

2
𝜆𝜀𝑖𝑖,𝑘𝜀𝑗𝑗,𝑘 + 𝜇𝜀𝑖𝑗,𝑘𝜀𝑖𝑗,𝑘)                                                          (2) 

where 𝜆 and 𝜇 are the usual Lamé constants, 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) are the components of the infinitesimal strain, and ℓ 

is a strain gradient coefficient with dimensions of length. 

For the bar model, the strain energy density function, 𝑈 is given by: 

𝑈 =
1

2
∫ (𝜎𝜀 + 𝜎𝑥𝜀𝑥)𝐴𝑑𝑥

𝐿

0

                                                                                 (3𝑎) 

where the components of the stress tensors 𝜎 and 𝜎𝑥, and the strain tensors 𝜀 and 𝜀𝑥, are obtained as: 

𝜎 = 𝛦
𝑑𝑢(𝑥, 𝑡)

𝑑𝑥
                                                                                            (3𝑏) 

𝜎𝑥  = ℓ2𝐸
𝑑2𝑢(𝑥, 𝑡)

𝑑𝑥2
                                                                                       (3𝑐) 

𝜀 =
𝑑𝑢(𝑥, 𝑡)

𝑑𝑥
                                                                                               (3𝑑) 

𝜀𝑥 =
𝑑2𝑢(𝑥, 𝑡)

𝑑𝑥2
                                                                                             (3𝑒) 

where 𝛦 denotes elastic modulus, 𝐴 the cross-section area, and ℓ the internal length parameter. 

2.2 Governing equation and boundary conditions 

For a bar with length 𝐿 and cross-section 𝐴, the strain energy 𝑈, the kinetic energy 𝑇, and the variation of the work 

done by the external loads 𝛿𝑊, are expressed as: 

𝑈 =
1

2
∫ {𝛦𝐴 (

𝑑𝑢(𝑥, 𝑡)

𝑑𝑥
)

2

+ ℓ2𝐸𝐴 (
𝑑2𝑢(𝑥, 𝑡)

𝑑𝑥2
)

2

}𝑑𝑥
𝐿

0

                                                         (4) 

𝑇 =
1

2
∫ 𝜌𝛢(

𝑑𝑢(𝑥, 𝑡)

𝑑𝑡
)2𝑑𝑥

𝐿

0

                                                                                   (5) 

𝛿𝑊 = ∫ 𝑞(𝑥, 𝑡)𝛿𝑢𝑑𝑥
𝐿

0

+ [𝑃𝛿𝑢]0
𝐿 + [𝑅𝛿

𝑑𝑢

𝑑𝑥
]0

𝐿                                                                  (6) 

where 𝑡 denotes the time, 𝜌 represents the density of the bar, 𝑞 indicates the distributed axial load, and 𝑃 and 𝑅 refer 
to the conventional and higher-order axial resultants, respectively, acting on the end sections. 

The governing equation and the BCs can be determined with the aid of Hamilton's principle: 

∫ 𝛿(𝑈 − 𝑇)𝑑𝑡
𝑡2

𝑡1

− ∫ 𝛿𝑊𝑑𝑡
𝑡2

𝑡1

= 0                                                                            (7) 

According to the calculus of variation, the first integral of Eq. 7 can be written as: 

∫ 𝛿(𝑈 − 𝑇)𝑑𝑡
𝑡2

𝑡1

= ∫ ∫ 𝛿𝐹(𝑢𝑥 , 𝑢𝑥𝑥 , �̇�)𝑑𝑥
𝐿

0

𝑑𝑡 =
𝑡2

𝑡1

∫ {∫ [
𝜕2

𝜕𝑥2
(

𝜕𝐹

𝜕𝑢𝑥𝑥

) −
𝜕

𝜕𝑥
(

𝜕𝐹

𝜕𝑢𝑥

) −
𝜕

𝜕𝑡
(

𝜕𝐹

𝜕�̇�
)]𝛿𝑢𝑑𝑥}

𝐿

0

𝑑𝑡
𝑡2

𝑡1

+ ∫ [[
𝜕𝐹

𝜕𝑢𝑥

−
𝜕

𝜕𝑥
(

𝜕𝐹

𝜕𝑢𝑥𝑥

)] 𝛿𝑢 +
𝜕𝐹

𝜕𝑢𝑥𝑥

𝛿𝑢′]

0

𝐿

𝑑𝑡
𝑡2

𝑡1

+ ∫ [
𝜕𝐹

𝜕�̇�
𝛿𝑢]

𝑡1

𝑡2

𝑑𝑥
𝐿

0

                                                     (8) 
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The Lagrangian function for the present case is: 

𝐹 =
𝛦𝐴

2
(𝑢𝑥)2 + ℓ2

𝛦𝐴

2
(𝑢𝑥𝑥)2 −

𝜌𝛢

2
(�̇�)2                                                                   (9) 

where 𝑢𝑥 =
𝑑𝑢

𝑑𝑥
 , 𝑢𝑥𝑥 =

𝑑2𝑢

𝑑𝑥2 , and �̇� =
𝑑𝑢

𝑑𝑡
. 

Thus, Eq. 8 becomes: 

∫ 𝛿(𝑈 − 𝑇)𝑑𝑡
𝑡2

𝑡1

= ∫ {∫ [ℓ2𝐸𝐴𝑢𝑥𝑥𝑥𝑥 − 𝐸𝐴𝑢𝑥𝑥 + 𝜌𝛢�̈�]𝛿𝑢𝑑𝑥}
𝐿

0

𝑑𝑡
𝑡2

𝑡1

+ ∫ [(𝐸𝐴𝑢𝑥 − ℓ2𝐸𝐴𝑢𝑥𝑥𝑥)𝛿𝑢 + ℓ2𝐸𝐴𝑢𝑥𝑥𝛿𝑢′]0
𝐿𝑑𝑡

𝑡2

𝑡1

+ ∫ [𝜌𝛢�̇�𝛿𝑢]𝑡1

𝑡2𝑑𝑥}
𝐿

0

                                                                                                                                                        (10) 

The second integral of Eq. 7 can be written as: 

∫ 𝛿𝑊𝑑𝑡
𝑡2

𝑡1

= ∫ ∫ 𝑞(𝑥, 𝑡)𝛿𝑢𝑑𝑥𝑑𝑡
𝐿

0

+ ∫ {[𝑃𝛿𝑢]0
𝐿 + [𝑄𝛿𝑢′]0

𝐿}𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

                                          (11) 

Because of Eqs. 10-11, Eq. 7 takes the form:  

∫ {∫ [ℓ2𝐸𝐴𝑢𝑥𝑥𝑥𝑥 − 𝐸𝐴𝑢𝑥𝑥 + 𝜌𝛢�̈�]𝛿𝑢𝑑𝑥}
𝐿

0

𝑑𝑡
𝑡2

𝑡1

+ ∫ [(𝐸𝐴𝑢𝑥 − ℓ2𝐸𝐴𝑢𝑥𝑥𝑥)𝛿𝑢 + ℓ2𝐸𝐴𝑢𝑥𝑥𝛿𝑢′]0
𝐿𝑑𝑡

𝑡2

𝑡1

+ ∫ [𝜌𝛢�̇�𝛿𝑢]𝑡1

𝑡2𝑑𝑥}
𝐿

0

− ∫ ∫ 𝑞(𝑥, 𝑡)𝛿𝑢𝑑𝑥𝑑𝑡
𝐿

0

+ ∫ [𝑃𝛿𝑢]0
𝐿 + [𝑄𝛿𝑢′]0

𝐿𝑑𝑡
𝑡2

𝑡1

𝑡2

𝑡1

= 0                                                                          (12) 

Thus, the governing equation of a GradEla bar is derived as: 

𝐸𝐴
𝜕2𝑢

𝜕𝑥2
− ℓ2𝐸𝐴

𝜕4𝑢

𝜕𝑥4
+ 𝑞 = 𝜌𝛢

𝜕2𝑢

𝜕𝑡2
                                                                    (13𝑎) 

the initial conditions satisfy the equation 

𝑑𝑢(𝑥, 𝑡2)

𝑑𝑡
𝛿𝑢(𝑥, 𝑡2) −

𝑑𝑢(𝑥, 𝑡1)

𝑑𝑡
𝛿𝑢(𝑥, 𝑡1) = 0                                                                (13𝑏) 

and the BCs are 

𝑃 = 𝛦𝐴
𝑑𝑢

𝑑𝑥
− ℓ2𝐸𝐴

𝜕3𝑢

𝜕𝑥3
  𝑜𝑟  𝛿𝑢 = 0    𝑎𝑡 𝑥 = 0, 𝐿                                                            (13𝑐) 

𝑄 = ℓ2𝐸𝐴
𝜕2𝑢

𝜕𝑥2
  𝑜𝑟  𝛿𝑢′ = 0    𝑎𝑡 𝑥 = 0, 𝐿                                                                     (13𝑑) 

It can be seen from Eq. 13a that the current GradEla bar model contains only one additional material parameter 
besides the two classical ones. The presence of ℓ in the new model enables the incorporation of the material size 
features and makes it possible to predict the size effect. Also, by setting ℓ = 0, the proposed bar model will reduce 
to the classical one. 

2.3 Longitudinal free vibration behavior 

In this subsection, the LFV behavior of the GradEla bar is investigated. So, by considering 𝑞 = 0, the Eq. 13a is 
taking the form: 

𝛦𝐴
𝜕2𝑢

𝜕𝑥2
− ℓ2𝐸𝐴

𝜕4𝑢

𝜕𝑥4
= 𝜌𝛢

𝜕2𝑢

𝜕𝑡2
                                                                                (14) 

To solve the equation of motion Eq. 14, we assume a solution of the form: 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑇(𝑡)                                                                                           (15) 

and use the separation of variables method. Substituting Eq. 15 into 14 leads to: 

𝛦

𝜌𝑈
(

𝜕2𝑈

𝜕𝑥2
− 𝑙2

𝜕4𝑈

𝜕𝑥4
) =

𝜕2𝑇
𝜕𝑡2

𝑇
                                                                                   (16) 

The left-hand side of Eq. 16 depends only on 𝑥, and the right-hand side depends only on 𝑡. Assuming, their common 

value to be −𝜔2, Eq. 16 can be written as two separate equations: 
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ℓ2
𝜕4𝑈

𝜕𝑥4
−

𝜕2𝑈

𝜕𝑥2
−

𝜌𝜔2

𝐸
𝑈 = 0                                                                                  (17𝑎) 

𝜕2𝑇

𝜕𝑡2
+ 𝜔2𝑇 = 0                                                                                              (17𝑏) 

The general solution of Eq. 17a is: 

𝑈(𝑥) = 𝑐1 cos 𝑠1𝑥 + 𝑐2 sin 𝑠1𝑥 + 𝑐3 cosh 𝑠2𝑥 + 𝑐4 sinh 𝑠2𝑥                                                (18𝑎) 

where 

𝑠1 = √−1+√4ℓ2𝜌𝜔2

𝐸
+1

2ℓ2    and  𝑠2 = √1+√4ℓ2𝜌𝜔2

𝐸
+1

2ℓ2 = √𝑠1
2 +

1

𝑙2                                                 (18𝑏) 

and 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants to be determined from the BCs of the bar. Eq. 18a represents the normal mode. 

The general solution of Eq. 17b is: 

𝑇(𝑡) = 𝑐5 sin 𝜔𝑡 + 𝑐6 cos 𝜔𝑡                                                                                (18𝑐) 

and 𝑐5, 𝑐6 are constants to be determined from the initial conditions of the bar. Eq. 18c indicates the harmonic motion. 

3 RESULTS AND DISCUSSION 

3.1 Case studies 

In the present section, several BCs (displayed in Fig. 1), like clamped-free (C-F), clamped-clamped (C–C), clamped-
attached mass (C-M), clamped-attached linear spring (C-S), clamped-attached mass and linear spring (C-MS), free-
free (F-F), free-attached mass (F-M), free-attached linear spring (F-S), and free-attached mass and linear spring (F-
MS) are studied. 

a) 

 

b) 

 

c) 

 
d) 

 

e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

Fig. 1. Bar models with different BCs a) C-F, b) C-C, c) C-M, d) C-S, e) C-MS, f) F-F, g) F-M, h) F-S, 
i) F-MS 

3.1.1 C-F boundary condition 

The BCs for this case are: 

𝑢(0, 𝑡) = 0                                                                                                (19𝑎) 

𝜕2𝑢(0, 𝑡)

𝜕𝑥2
= 0                                                                                              (19𝑏) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
= 0                                                                                (19𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                               (19𝑑) 

Applying the BCs of Eqs. 19a-19b to Eq. 18a leads to: 𝑐1 = 𝑐3 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐2 sin 𝑠1𝑥 + 𝑐4 sinh 𝑠2𝑥                                                                                 (20) 

Applying the BCs of Eqs. 19c-19d to Eq. 20 and 15 leads to: 

[
𝑠1 cos 𝑠1𝐿 + ℓ2𝑠1

3 cos 𝑠1𝐿 𝑠2 cosh 𝑠2𝐿 − ℓ2𝑠2
3 cosh 𝑠2𝐿

𝑠1 cos 𝑠1𝐿 𝑠2 cosh 𝑠2𝐿
] [

𝑐2

𝑐4
] = [

0
0

]                                        (21) 
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For a nontrivial solution, the determinant of the coefficient matrix of Eq. 21 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequency can be obtained: 

cos 𝑠1𝐿 = 0                                                                                                 (22𝑎) 

So, to satisfy the Eq. 22a 𝑠1 should be: 

𝑠1 =
(2𝑛−1)𝜋

2𝐿
    with 𝑛 = 1,2, …                                                                            (22𝑏) 

Thus, by inserting Eq. 22b in Eq. 18b, the natural LFs of the C-F bar are: 

𝜔𝑛 =
(2𝑛 − 1)𝜋

2𝐿
√

𝐸

𝜌
√1 + ℓ2 (

(2𝑛 − 1)𝜋

2𝐿
)

2

= 𝜔𝑛
𝑐𝑙√1 + ℓ2 (

(2𝑛 − 1)𝜋

2𝐿
)

2

                                   (23𝑎) 

where 𝜔𝑛
𝑐𝑙 =

(2𝑛−1)𝜋

2𝐿
√

𝐸

𝜌
  denotes the natural LF of the classical bar model, and 𝑛 the number of the vibration mode. 

Thus, the normalized LFs 𝜔𝑛
𝑛 of the C-F bar are: 

𝜔𝑛
𝑛 =

𝜔𝑛

𝜔𝑛
𝑐𝑙

= √1 + ℓ2(
(2𝑛 − 1)𝜋

2𝐿
)2                                                                       (23𝑏) 

3.1.2 C-C boundary condition 

The BCs for this case are: 

𝑢(0, 𝑡) = 0                                                                                                (24𝑎) 

𝜕2𝑢(0, 𝑡)

𝜕𝑥2
= 0                                                                                              (24𝑏) 

𝑢(𝐿, 𝑡) = 0                                                                                                (24𝑐) 

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑥2
= 0                                                                                              (24𝑑) 

Applying the BCs of Eqs. 24a-24b to Eq. 18a leads to: 𝑐1 = 𝑐3 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐2 sin 𝑠1𝑥 + 𝑐4 sinh 𝑠2𝑥                                                                                (20) 

Applying the BCs of Eqs. 24c-24d to Eq. 20 and 15 leads to: 

[
sin 𝑠1𝐿 sinh 𝑠2𝐿

−𝑠1
2 sin 𝑠1𝐿 𝑠2

2 sinh 𝑠2𝐿
] [

𝑐2

𝑐4
] = [

0
0

]                                                                        (25) 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 25 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequency can be obtained: 

sin 𝑠1𝐿 = 0                                                                                              (26𝑎) 

So, to satisfy the Eq. 26a 𝑠1 should be: 

𝑠1 =
𝑛𝜋

𝐿
    with 𝑛 = 1,2, …                                                                                (26𝑏) 

Thus, by inserting Eq. 26b in Eq. 18b, the natural LFs of the C-C bar are: 

𝜔𝑛 =
𝑛𝜋

𝐿
√

𝐸

𝜌
√1 + ℓ2 (

𝑛𝜋

𝐿
)

2

= 𝜔𝑛
𝑐𝑙√1 + ℓ2 (

𝑛𝜋

𝐿
)

2

                                                       (27𝑎) 

where 𝜔𝑛
𝑐𝑙 =

𝑛𝜋

𝐿
√

𝐸

𝜌
  denotes the natural LF of the classical bar model, and 𝑛 the number of the vibration mode. 

Thus, the normalized LFs 𝜔𝑛
𝑛 of the C-C bar are: 

𝜔𝑛
𝑛 =

𝜔𝑛

𝜔𝑛
𝑐𝑙

= √1 + ℓ2(
𝑛𝜋

𝐿
)2                                                                              (27𝑏) 
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3.1.3 C-M boundary condition 

The BCs for this case are: 

𝑢(0, 𝑡) = 0                                                                                                (28𝑎) 

𝑢′′(0, 𝑡) = 0                                                                                               (28𝑏) 

𝐸𝐴 (
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝑀

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑡2
                                                                 (28𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                              (28𝑑) 

Applying the BCs of Eqs. 28a-28b to Eq. 18a leads to: 𝑐1 = 𝑐3 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐2 sin 𝑠1𝑥 + 𝑐4 sinh 𝑠2𝑥                                                                              (20) 

Applying the BCs of Eqs. 28c-28d to Eqs. 20 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐2

𝑐4
] = [

0
0

]                                                                                      (29) 

where 

𝐶11 = 𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1
2) − 𝜔2𝑀 sin 𝑠1𝐿 

𝐶12 = 𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2
2) − 𝜔2𝑀 sinh 𝑠2𝐿 

𝐶21 = 𝑠1 cos 𝑠1𝐿 

𝐶22 = 𝑠2 cosh 𝑠2𝐿 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 29 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the C-M bar can be obtained: 

(𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1
2) − 𝜔2𝑀 sin 𝑠1𝐿)(𝑠2 cosh 𝑠2𝐿) − (𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2

2) − 𝜔2𝑀 sinh 𝑠2𝐿)(𝑠1 cos 𝑠1𝐿) = 0               (30) 

Eq. 30 is complex, so we follow a different procedure to find the natural frequencies. For a sequence of values of 𝜔 
we solve Eq. 30 and observe which values are the roots. Those values are the natural frequencies, where the first 
root is the first frequency 𝜔1, the second root is the second one 𝜔2, and so on. 

3.1.4 C-S boundary condition 

The BCs for this case are: 

𝑢(0, 𝑡) = 0                                                                                             (31𝑎) 

𝜕2𝑢(0, 𝑡)

𝜕𝑥2
= 0                                                                                           (31𝑏) 

𝐸𝐴(
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
   − ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝐾𝑢(𝐿, 𝑡)                                                                (31𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                             (31𝑑) 

Applying the BCs of Eqs. 31a-31b to Eq. 18a leads to: 𝑐1 = 𝑐3 = 0. 

So, Eq. 18a becomes: 
𝑈(𝑥) = 𝑐2 sin 𝑠1𝑥 + 𝑐4 sinh 𝑠2𝑥                                                                                (20) 

Applying the BCs of Eqs. 31c-31d to Eqs. 20 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐2

𝑐4
] = [

0
0

]                                                                                        (32) 

where 

𝐶11 = 𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1
2) + 𝐾 sin 𝑠1𝐿 

𝐶12 = 𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2
2) + 𝐾 sinh 𝑠2𝐿 

𝐶21 = 𝑠1 cos 𝑠1𝐿 

𝐶22 = 𝑠2 cosh 𝑠2𝐿 
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For a nontrivial solution, the determinant of the coefficient matrix of Eq. 32 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the C-S bar can be obtained: 

(𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1
2) + 𝐾 sin 𝑠1𝐿)(𝑠2 cosh 𝑠2𝐿) − (𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2

2) + 𝐾 sinh 𝑠2𝐿)(𝑠1 cos 𝑠1𝐿) = 0           (33) 

Eq. 33 is complex, so we follow the same procedure stated before to find its roots which are the natural frequencies. 

3.1.5 C-MS boundary condition 

The BCs for this case are: 

𝑢(0, 𝑡) = 0                                                                                               (34𝑎) 

𝜕2𝑢(0, 𝑡)

𝜕𝑥2
= 0                                                                                             (34𝑏) 

𝐸𝐴(
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝐾𝑢(𝐿, 𝑡) − 𝑀

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑡2
                                                     (34𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                              (34𝑑) 

Applying the BCs of Eqs. 34a-34b to Eq. 18a leads to: 𝑐1 = 𝑐3 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐2 sin 𝑠1𝑥 + 𝑐4 sinh 𝑠2𝑥                                                                               (20) 

Applying the BCs of Eqs. 34c-34d to Eqs. 20 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐2

𝑐4
] = [

0
0

]                                                                                        (35) 

where 
𝐶11 = 𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1

2) − sin 𝑠1𝐿 (𝜔2𝑀 − 𝐾) 

𝐶12 = 𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2
2) − sinh 𝑠2𝐿 (𝜔2𝑀 − 𝐾) 

𝐶21 = 𝑠1 cos 𝑠1𝐿 

𝐶22 = 𝑠2 cosh 𝑠2𝐿 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 35 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the C-MS bar can be obtained: 

(𝐸𝐴𝑠1 cos 𝑠1𝐿 (1 + ℓ2𝑠1
2) − sin 𝑠1𝐿 (𝜔2𝑀 − 𝐾))(𝑠2 cosh 𝑠2𝐿)

− (𝛦𝛢𝑠2 cosh 𝑠2𝐿 (1 − ℓ2𝑠2
2) − sinh 𝑠2𝐿 (𝜔2𝑀 − 𝐾))(𝑠1 cos 𝑠1𝐿) = 0                                                (36) 

Eq. 36 is complex, so we follow the same procedure stated before to find the natural frequencies. 

3.1.6 F-F boundary condition 

The BCs for this case are: 

𝑑𝑢(0, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(0, 𝑡)

𝜕𝑥3
= 0                                                                                 (37𝑎) 

𝑑𝑢(0, 𝑡)

𝑑𝑥
= 0                                                                                              (37𝑏) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
= 0                                                                                  (37𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                              (37𝑑) 

Applying the BCs of Eqs. 37a-37b to Eq. 18a leads to: 𝑐2 = 𝑐4 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐1 cos 𝑠1𝑥 + 𝑐3 cosh 𝑠2𝑥                                                                             (38) 

Applying the BCs of Eqs. 37c-37d to Eq. 38 and 15 leads to: 

[
−𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1

2) 𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2
2)

−𝑠1 sin 𝑠1𝐿 𝑠2 sinh 𝑠2𝐿
] [

𝑐1

𝑐3
] = [

0
0

]                                                      (39) 
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For a nontrivial solution, the determinant of the coefficient matrix of Eq. 39 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequency can be obtained: 

sin 𝑠1𝐿 = 0                                                                                               (40𝑎) 

So, to satisfy the Eq. 22a 𝑠1 should be: 

𝑠1 =
𝑛𝜋

𝐿
    with 𝑛 = 1,2, …                                                                                 ( 40𝑏) 

Thus, by inserting Eq. 40b in Eq. 18b, the natural longitudinal frequencies of the F-F bar are: 

𝜔𝑛 =
𝑛𝜋

𝐿
√

𝐸

𝜌
√1 + ℓ2 (

𝑛𝜋

𝐿
)

2

= 𝜔𝑛
𝑐𝑙√1 + ℓ2 (

𝑛𝜋

𝐿
)

2

                                                            (41𝑎) 

where 𝜔𝑛
𝑐𝑙 =

𝑛𝜋

𝐿
√

𝐸

𝜌
 denotes the natural LF of the classical bar model, and 𝑛 the number of the vibration mode. 

Thus, the normalized LF 𝜔𝑛
𝑛 of the F-F bar are: 

𝜔𝑛
𝑛 =

𝜔𝑛

𝜔𝑛
𝑐𝑙

= √1 + ℓ2(
𝑛𝜋

𝐿
)2                                                                                (41𝑏) 

3.1.7 F-M boundary condition 

The BCs for this case are: 

𝑑𝑢(0, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(0, 𝑡)

𝜕𝑥3
= 0                                                                               (42𝑎) 

𝑑𝑢(0, 𝑡)

𝑑𝑥
= 0                                                                                              (42𝑏) 

𝐸𝐴(
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝑀

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑡2
                                                               (42𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                              (42𝑑) 

Applying the BCs of Eqs. 42a-42b to Eq. 18a leads to: 𝑐2 = 𝑐4 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐1 cos 𝑠1𝑥 + 𝑐3 cosh 𝑠2𝑥                                                                             (38) 

Applying the BCs of Eqs. 42c-42d to Eq. 38 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐1

𝑐3
] = [

0
0

]                                                                                      (43) 

where 

𝐶11 = −𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) − 𝑀𝜔2 cos 𝑠1𝐿 

𝐶12 = 𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2
2) − 𝑀𝜔2 cosh 𝑠2𝐿 

𝐶21 = −𝑠1 sin 𝑠1𝐿 

𝐶22 = 𝑠2 sinh 𝑠2𝐿 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 43 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the F-M bar can be obtained: 

(−𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) − 𝑀𝜔2 cos 𝑠1𝐿)(𝑠2 sinh 𝑠2𝐿) + (𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2

2) − 𝑀𝜔2 cosh 𝑠2𝐿)(𝑠1 sin 𝑠1𝐿) = 0          (44) 

Eq. (44) is complex, so we follow the same procedure stated before to find the natural frequencies. 

3.1.8 F-S boundary condition 

The BCs for this case are: 

𝑑𝑢(0, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(0, 𝑡)

𝜕𝑥3
= 0                                                                               (45𝑎) 

𝑑𝑢(0, 𝑡)

𝑑𝑥
= 0                                                                                             (45𝑏) 
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𝐸𝐴(
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝐾𝑢(𝐿, 𝑡)                                                                  (45𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                             (45𝑑) 

Applying the BCs of Eqs. 45a-45b to Eq. 18a leads to: 𝑐2 = 𝑐4 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐1 cos 𝑠1𝑥 + 𝑐3 cosh 𝑠2𝑥                                                                               (38) 

Applying the BCs of Eqs. 45c-45d to Eq. 38 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐1

𝑐3
] = [

0
0

]                                                                                     (46) 

where 

𝐶11 = −𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) + 𝐾 cos 𝑠1𝐿 

𝐶12 = 𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2
2) + 𝐾 cosh 𝑠2𝐿 

𝐶21 = −𝑠1 sin 𝑠1𝐿 

𝐶22 = 𝑠2 sinh 𝑠2𝐿 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 46 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the F-S bar can be obtained: 

(−𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) + 𝐾 cos 𝑠1𝐿)(𝑠2 sinh 𝑠2𝐿) + (𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2

2) + 𝐾 cosh 𝑠2𝐿)(𝑠1 sin 𝑠1𝐿) = 0     (47) 

Eq. 47 is complex, so we follow the same procedure stated before to find the natural frequencies. 

3.1.9 F-MS boundary condition 

The BCs for this case are: 

𝑑𝑢(0, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(0, 𝑡)

𝜕𝑥3
= 0                                                                               (48𝑎) 

𝑑𝑢(0, 𝑡)

𝑑𝑥
= 0                                                                                             (48𝑏) 

𝐸𝐴(
𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
− ℓ2

𝜕3𝑢(𝐿, 𝑡)

𝜕𝑥3
) = −𝐾𝑢(𝐿, 𝑡) − 𝑀

𝜕2𝑢(𝐿, 𝑡)

𝜕𝑡2
                                                     (48𝑐) 

𝑑𝑢(𝐿, 𝑡)

𝑑𝑥
= 0                                                                                             (48𝑑) 

Applying the BCs of Eqs. 48a-48b to Eq. 18a leads to: 𝑐2 = 𝑐4 = 0. 

So, Eq. 18a becomes: 

𝑈(𝑥) = 𝑐1 cos 𝑠1𝑥 + 𝑐3 cosh 𝑠2𝑥                                                                             (38) 

Applying the BCs of Eqs. 48c-48d to Eq. 38 and 15 leads to: 

[
𝐶11 𝐶12

𝐶21 𝐶22
] [

𝑐1

𝑐3
] = [

0
0

]                                                                                      (49) 

where 

𝐶11 = −𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) + 𝐾 cos 𝑠1𝐿 − 𝑀𝜔2 cos 𝑠1𝐿 

𝐶12 = 𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2
2) + 𝐾 cosh 𝑠2𝐿 − 𝑀𝜔2 cosh 𝑠2𝐿 

𝐶21 = −𝑠1 sin 𝑠1𝐿 

𝐶22 = 𝑠2 sinh 𝑠2𝐿 

For a nontrivial solution, the determinant of the coefficient matrix of Eq. 49 must be equal to zero. 

So, it is derived the characteristic equation from which the natural frequencies of the F-MS bar can be obtained: 

(−𝐸𝐴𝑠1 sin 𝑠1𝐿 (1 + ℓ2𝑠1
2) − cos 𝑠1𝐿 (𝑀𝜔2 − 𝐾))(𝑠2 sinh 𝑠2𝐿)

+ (𝐸𝐴𝑠2 sinh 𝑠2𝐿 (1 − ℓ2𝑠2
2) − cosh 𝑠2𝐿 (𝑀𝜔2 − 𝐾))(𝑠1 sin 𝑠1𝐿) = 0                                                       (50) 

Eq. 50 is complex, so we follow the same procedure stated before to find the natural frequencies. 
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3.2 Numerical examples 

Numerical examples are presented here to show the effects of various parameters, like the ratio of the internal length 
ℓ to the length of the bar 𝐿, the mode number 𝑛, the different BCs, the attached mass 𝑀, and the attached spring 𝐾, 

on the natural LFs of the GradEla bars with different BCs. The parameters that are used are 𝛦 = 1𝐺𝑃𝑎, 𝐴 = 1 𝜇𝑚2, 

and 𝜌 = 2000 𝑘𝑔 𝑚3⁄ . 

Figs. 2-10 shows the influence of the above parameters on the LFs of the GradEla bar for the C-F, C-C, F-F, C-M, 
C-S, C-MS, F-M, F-S, and F-MS cases, respectively. 

From Figs. 2-4, is observed that the LFs of the GradEla bar are greater than those predicted by the classical theory. 
By the increase of the ratio ℓ 𝐿⁄  the frequencies increase. That confirms that the GradEla bar model predicts a stiffer 
bar than the classical theory's one. It is also noticed that the difference between the two models' results is more 
noticeable for higher modes. 

Studying Figs. 5-7 similar results with the C-F case are observed when the attached mass and spring take zero 
values. Also, by the increase of the ratio 𝑀 𝑚⁄  the frequencies decrease, and by the increase of the ratio 𝐾 𝑘⁄  the 

frequencies increase. While, the frequencies decrease with the simultaneous increase of the ratios 𝑀 𝑚⁄  and 𝐾 𝑘⁄ .  

From Fig. 8 similar results with the F-F case are observed when the attached mass takes zero values. Also, by the 
increase of the ratio 𝑀 𝑚⁄  the frequencies decrease. 

From Fig. 9 it is observed that the frequencies increase by the increase of the ratio 𝐾 𝑘⁄ .  

While, from Fig. 10 it is observed that the first frequency increases and the second one decreases by the 
simultaneous increase of the ratios 𝑀 𝑚⁄  and 𝐾 𝑘⁄ . 

Fig. 11 compares all the above BCs on the influence of the ratio ℓ 𝐿⁄ , and the mode number 𝑛, on the LFs of the 
GradEla bar. 

In a general manner, it can be observed that the LFs increase by increasing the ratio ℓ 𝐿⁄ , and the mode number 𝑛. 
In addition, it can be seen that the size effects are most prominent for the F-M BCs. Also, the LFs of the C-C and F-
F BCs are equal. 

  
a) b) 

Fig. 2. Influence of the ratio ℓ 𝐿⁄ , and the mode number 𝑛, on the LFs of the C-F GradEla bar 

 

  
a) b) 

Fig. 3. Influence of the ratio ℓ 𝐿⁄ , and the mode number 𝑛, on the LFs of the C-C GradEla bar 
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a) b) 

Fig. 4. Influence of the ratio ℓ 𝐿⁄ , and the mode number 𝑛, on the LFs of the F-F GradEla bar 

  
a) b) 

 
c) 

Fig. 5. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratio 𝑀 𝑚⁄ , on the LFs of the C-M GradEla bar 

 

  
a) b) 
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c) 

Fig. 6. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratio 𝐾 𝑘⁄ , on the LFs of the C-S GradEla bar 

  
a) b) 

 
c) 

Fig. 7. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratios 𝑀 𝑚⁄  and 𝐾 𝑘⁄ , on the LFs of the C-MS 
GradEla bar 

  
a) b) 
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c) 

Fig. 8. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratio 𝑀 𝑚⁄ , on the LFs of the F-M GradEla bar. 

  
a) b) 

 
c) 

Fig. 9. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratio 𝐾 𝑘⁄ , on the LFs of the F-S GradEla bar 

  
a) b) 
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c) 

Fig. 10. Influence of the ratio ℓ 𝐿⁄ , the mode number 𝑛, and the ratios 𝑀 𝑚⁄  and 𝐾 𝑘⁄ , on the LFs of the F-MS 
GradEla bar 

  
a) b) 

Fig. 11. Influence of the different types of BCs on the LFs of the GradEla bar, for different values of the ratio 
ℓ 𝐿⁄  and the mode number 𝑛 

The presentation of these novel solutions has potential general application to various bar problems. Problems of 
nanorods, pylons in wind farms, electric wires pylons, telecommunication equipment, or lighting posts, could benefit 
from these solutions. 

3.3 Experimental validation 

To get further insight into the use of the GradEla theory and examine its accuracy and validity in real engineering 
problems, the GradEla theory is applied to predict the LVs of an experiment from the literature [30]. A thin cylindrical 

steel bar with length 𝐿 = 0.7015 𝑚, diameter 𝐷 = 0.01165 𝑚, mass 𝑚 = 0.5782 𝑘𝑔, and density 𝜌 = 7732.3 𝑘𝑔/𝑚3, 
which is free at both ends is subjected to a free vibration. The elastic modulus is assumed to be 𝐸 = 200 𝐺𝑃𝑎, which 

is a typical literature value for steel, while the internal length is taken equal to ℓ = 5.82 𝑚𝑚, which is a value equal to 
the radius of the bar. 

The LFs versus 𝑛 are plotted in Fig. 12 for both the classical and the GradEla cases and compared with the 
experimental ones.  Furthermore, the results are depicted in Table 1 along with the error for each case. It is proved 
that the GradEla case has better accuracy, i.e. 0.36 % error, compared to the classical one, i.e. 0.64 % error, 
especially for modes 3 to 5. 

Table 1. LFs for both classical and GradEla cases along with the error 

n Exp. results Class. Frequency (Error %) GradEla Frequency (Error %) 

1 3649.9 3624.9    (0.68) 3626.2    (0.65) 

2 7297.1 7249.9    (0.65) 7259.8    (0.51) 

3 10944.3 10874.8  (0.63) 10908.1  (0.33) 

4 14591.4 14499.8  (0.63) 14578.6  (0.09) 

5 18235.9 18124.8  (0.61) 18278.3  (0.23) 

 Avg.Error= 0.64 % 0.36 % 
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Fig. 12. Longitudinal frequencies versus 𝑛 for both the classical and the strain gradient cases compared with the 
experiment [30] 

4 CONCLUSIONS 

The GradEla theory is employed, in this paper, to study the LFV behavior of bar with several BCs. The governing 
equation of motion of gradient elastic bars is derived via Hamilton's principle. The equation of motion is solved for 
various combinations of BCs like clamped, free, attached mass and/or spring. It is noted that many of these solutions 
are the first in the literature for the GradEla bars. Various applications of bar problems under vibration can benefit 
from these solutions. It is investigated the effect of the internal length parameter, the modes, the attachments, the 
BCs, and the length of the bar. It is concluded that the GradEla bar is size-dependent and stiffer, and thus its LFs 
are greater, compared with the classical one. The difference between the gradient and classical frequencies 
increases by increasing the mode number and gradient elastic parameter. In addition, the inclusion of the attached 
mass and spring mainly decreases and increases, respectively, the LFs of bars, while the simultaneous increase of 
the mass and spring decreases its LFs. Also, it is concluded that the size effects are most noticeable for the F-M BC, 
while the LFs of the C-C and F-F ones are equal. Finally, the use of GradEla mechanics is shown in a real experiment 
found in the literature, further emphasising its usefulness in real vibration problems. 
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