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Free vibration analysis of the spatial frames consisting of 3D beam elements is presented in the 
paper, using the consistent mass matrix, as implemented in the code ALIN, which is written in C++. 
The values of circular frequencies for the spatial simply supported and clamped-clamped beam, ob-
tained by using ALIN, are compared with the exact solutions and the solutions obtained by using the 
code TOWER. In order to obtain better, more exact, results, it is necessary to discretize the frame 
into more finite elements. As opposed to TOWER, which is using the lumped mass matrix, the code 
ALIN is using the consistent mass matrix, thus allowing wider discretization, into smaller number of 
finite elements, then in the case of TOWER.
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INTRODUCTION

Spatial frames in reality are systems with continu-
ously distributed mass, i.e. systems with infinite 
number of degrees of freedom. In order to simplify 
calculation of such systems, continuous mass is 
substituted by consistent or concentrated mass. 
Formulation of the consistent mass matrix, applied 
in this paper and implemented in the originally de-
veloped code ALIN, is using the same interpolation 
functions used in the formulation of the stiffness 
matrix. Consequently, the consistent mass matrix 
of beam elements is of the same structure as the 
stiffness matrix. The concentrated mass matrix of 
elements has a diagonal structure, which is exacty 
the reason of its frequent implementation in the 
commercial computer codes, such as TOWER. 

ANALYSIS OF BEAM ELEMENT IN SPACE

The spatial frames in this paper are represented 
by 3D beam finite elements with two nodal points 
and with six dofs at each node. Generalized dis-
placements and the corresponding generalized 
forces in nodes i and j are the components of the 
vector of generalized displacements q and the 
vector of generalized forces R
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The stiffness matrix of the 3D beam element k 
(3) may be obtained by the principle of super-
position, i.e. by separation of the spatial state of 
stress of the element into: axial state, bending 
in the plane xy, bending in the plane xz and the 
torsion, [03]:
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Mass matrix of the beam element

As it is well known, connection between the vec-
tor of the generalized inertial forces  Fin and the 
vector of generalized accelerations &&q  is estab-
lished by the mass matrix m of the element:

F qin m= -    && (4)

(5)

Mass matrix m is determined by the expression:

m N N=ò T

V

Á dV

where ! is the mass density of the material, and 
N is the matrix of interpolation functions.

Mass matrix defined by (5) is called the consis-
tent mass matrix if the same interpolation func-
tions are used as for the displacement field within 
the element. This mass matrix may be obtained 
in the same way as the stiffness matrix (3), using 
the principle of superosition, i.e. by separation of 
the spatial state of stress into axial state, bend-
ing in the plane xy (about z axis), bending in the 
xz plane (about axis y) and the torsion.

Consequently, expression (4) may be presented as:
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where m
a
 is the mass matrix of axial vibrations, 

m
sz

 and m
sy

 are mass matrices of transverse vi-
brations in planes xy and xz, and m

t
 is the mass 

matrix of torsional vibrations of the element.

If for the beam element under axial loading one 
assumes the interpolation functions as follows:

N = x  x , x1-[ ] =
x

L
(7)

the consistent mass matrix is obtained as:

ma

ÁAL

6

2 1

1
=

é

ë
ê

ù

û
ú2

(8)

If the beam element is exposed to bending in the 
plane xy, i.e. xz and if the corresponding inter-
polation functions are L�Hermite�s polynomials of 
the first kind:

(9)
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the consistent mass matrices are:
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If one assumes linear distribution of the angle 
of twist of the beam element exposed to Saint 
Venant�s free torsion, i.e. if linear interpolation 
functions are assumed:

N = x  x , x1-[ ] =
x

L
(13)

the consistent mass matrix is obtained as:
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where I
0
 is the polar moment of inertia of the 

cross section of the beam element. 

The consistent mass matrix of 3D beam element 
(15) is obtained from mass matrices ma, msz, 
msy and mt, which are given by expressions (8), 
(11), (12) and (14). Its elements are positioned 
at the corresponding locations according to the 
order of generalized accelerations and general-
ized inertial forces, corresponding to the order of 
the generalized displacements and forces (first 
for the node i and then node j), as given by ex-
pressions (1) and (2).
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In order to simplify analysis and calculation, the 
total inertial force of the finite element is uniform-
ly distributed as concentrated forces at nodes, 
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by using the concentrated mass matrix. It has 
a diagonal structure due to assumption that ac-
celerations of the element in direction of some 
generalized displacement are generating inertial 
forces only in that direction.

In this case, for the 3D beam element, the con-
centrated mass matrix is given as:

m I=
ÁAL

2
(16)

where I is the unit matrix of the twelfth order.

In order to further simplify, one may assume that 
certain diagonal elements of the concentrated 
mass matrix (16) are equal to zero, i.e. one may 
assume that not all degrees of freedom are of 
the same importance in dynamic analysis (e.g. 
by neglecting the influence of the so-called �ro-
tational inertia� terms).

ANALYSIS OF FREE VIBRATIONS
OF THE SYSTEM

Differential equations of motion of the free un-
damped vibrations of the system, in the matrix 
form, are given as:

Mq Kq 0&&+ = (17)

where M and K are mass and stiffness matrices, 
while q and   are the vectors of the generalized 
displacements and accelerations of the nodes of 
the system. 

In solution of Eqs. (17) one assumes that all gener-
alized displacements of nodes q

i
(t) (i=1,2,...,n) are 

changing synchronously and synphasely. There-
fore, the solution of Eqs. (17) is assumed as:

q q(t) cos(Ét )= -f (18)

where q  - constant vector of order n, ! - cir-
cular frequency of free vibrations and " - phase 
angle of free vibrations.

If assumed solution (18) is inserted into Eqs. 
(17), one obtains:

( É )2
K M q- =0 (19)

Relation (19) represents, in the mathematical 
sense, the eigenvalue problem of the pair of ma-
trices K and M. It is necessary to determine the 
values ! 2 for which there is a non-trivial solution 
for constants q . The system of homogeneous 
algebraic equations (19) has a non-trivial solu-
tion if the determinant of the system is equal to 
zero, i.e.:

det É2K M-é
ëê

ù
ûú

=0 (20)

If expression (20) is developed, it represents the 
characteristic polynomial equation of order n in 
!2. Since matrices K and M are symmetric and 
positive definite, all roots of the characteristic 
polynomial equation are real, positive ane mu-
tually different: !

1
2, !

2
2,..., !

n
2. They represent 

the eigenvalues of the system, while the square 
roots of these values: !

1
, !

2
,...,!

n
 are the natu-

ral circular frequencies of the system, where:

( É )    r
2 r

K M q- = ( )=0 1 2r n, ,..., (21)

Since equations (21) are homogeneous, ele-
ments of the eigenvector qr  are determined up 
to the constant factor.  

The eigenvalue problem of the pair of matrices K 
and M (19), represents the generalized eigenval-
ue problem, which, by the corresponding trans-
formations [02], may be reduced to the standard 
eigenvalue problem:

Ax x=» (22)

Advantages of transformation of the generalized 
eigenvalue problem into the standard problem is 
in the fact that there are more very efficient algo-
rithms for the solution of the standard eigenvalue 
problem (e.g. Jacobi and Lanczos algorithm).

NUMERICAL EXAMPLE

Incorporating previously discussed solutions, the 
computer code ALIN was developed [05], using 
programming language C++. The code is orient-
ed to dynamic analysis of spatial frames, in this 
case to free vibration analysis of spatial frames.

Using the code ALIN, this paper is presenting the 
free undamped vibration analysis of two spatial 
girders (Figures 1-2), which are different only in 
boundary conditions: one is the spatial simply 
supported beam, and the other is a clamped-
clamped beam. Obtained values of circular fre-
quencies are compared with results obtained 
using the code TOWER and also with exact so-
lutions obtained for the continuous systems with 
infinite number of dofs, given in literature [02].

Tabeles 1-4 are presening the values of circular 
frequenciies of free undamped vibrations for the 
first three modes in plane xy, i.e. xz, of consid-
ered beams, obtained by ALIN and TOWER, us-
ing different discretizations into finite elements. 
The cases when beams are treated as a single 
finite element and then discretizad into 2, 3, 4 
and 5 finite elements are considered. Obrained 
values of circular frequencies are compared with 
exact values obtained from [02].
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Figure 1: Spatial simply supported beam

Figure 2: Spatial clamped-clamped beam

Tabeles 1-4 are presening the values of circular 
frequenciies of free undamped vibrations for the 
first three modes in plane xy, i.e. xz, of consid-
ered beams, obtained by ALIN and TOWER, us-
ing different discretizations into finite elements. 
The cases when beams are treated as a single 

finite element and then discretizad into 2, 3, 4 
and 5 finite elements are considered. Obrained 
values of circular frequencies are compared with 
exact values obtained from [02].

Table 1: Circular frequencies of free vibrations in xy plane of a spatial simply supported beam

Circular frequencies [rad/s]

Difference [%]E x a c t 

sol. [4]

ALIN TOWER

1f.e 2f.e 3f.e 4f.e 5f.e 2f.e 3f.e 4f.e 5f.e

/1/ /2/ /3/ /4/ /5/ /6/ /7/ /8/ /9/ /10/
/2/-/1/ /3/-/1/

/7/-/1/

/4/-/1/

/8/-/1/

/5/-/1/

/9/-/1/

/6/-/1/

/10/-/1/

1 61.10 67.81 61.34 61.15 61.11 61.10 60.43 60.82 60.88 60.89 10.99
0.39

-1.10

0.08

-0.45

0.03

-0.36

0.01

-0.33

2 244.39 310.75 271.25 245.35 245.33 244.79 - 232.59 239.15 240.52 27.16
10.99

-

1.18

-4.83

0.39

-2.14

0.17

-1.58

3 549.87 - 681.80 610.31 55.91 554.23 - - 496.50 521.69 -
23.99

-

10.99

-

1.83

-9.71

0.79

-5.12

M
o
d
e
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Table 2: Circular frequencies of free vibrations in xz plane of a spatial simply supported beam

Circular frequencies [rad/s]

Difference [%]E x a c t 

sol. [4]

ALIN TOWER

1f.e 2f.e 3f.e 4f.e 5f.e 2f.e 3f.e 4f.e 5f.e

/1/ /2/ /3/ /4/ /5/ /6/ /7/ /8/ /9/ /10/
/2/-/1/ /3/-/1/

/7/-/1/

/4/-/1/

/8/-/1/

/5/-/1/

/9/-/1/

/6/-/1/

/10/-/1/

1 45.82 50.86 46.00 45.86 45.83 45.83 45.39 45.68 45.72 45.73
10.99 0.39

-0.94

0.08

-0.31

0.03

-0.22

0.01

-0.20

2 183.29 233.06 203.44 185.45 184.01 183.59 - 175.66 180.47 181.43
27.16 10.99

-

1.18

-4.17

0.39

-1.54

0.17

-1.01

3 412.40 - 511.35 457.73 415.68 415.68 - - 378.25 396.97
- 23.99

-

10.99

-

1.83

-8.28

0.79

-3.74

M
o
d
e

Table 3: Circular frequencies of free vibrations in xy plane of a spatial clamped-clamped beam

Circular frequencies [rad/s]

Difference [%]E x a c t 

sol. [4]

ALIN TOWER

1f.e 2f.e 3f.e 4f.e 5f.e 2f.e 3f.e 4f.e 5f.e

/1/ /2/ /3/ /4/ /5/ /6/ /7/ /8/ /9/ /10/
/2/-/1/ /3/-/1/

/7/-/1/

/4/-/1/

/8/-/1/

/5/-/1/

/9/-/1/

/6/-/1/

/10/-/1/

1 138.50 - 140.74 139.07 138.68 138.57 119.58 134.29 135.92 136.25 -
1.62

-13.66

0.41

-3.04

0.13

-1.86

0.05

-1.62

2 381.78 - - 398.40 385.31 383.30 - 307.38 353.70 364.14 -
-

-

2.00

-7.35

0.92

-7.35

0.40

-4.62

3 748.43 - - - 764.42 758.79 - - 571.56 657.93 -
-

-

-

-

2.14

-23.63

1.38

-12.09

M
o
d
e

Table 4: Circular frequencies of free vibrations in xz plane of a spatial clamped-clamped beam

Circular frequencies [rad/s]

Difference [%]E x a c t 

sol. [4]

ALIN TOWER

1f.e 2f.e 3f.e 4f.e 5f.e 2f.e 3f.e 4f.e 5f.e

/1/ /2/ /3/ /4/ /5/ /6/ /7/ /8/ /9/ /10/
/2/-/1/ /3/-/1/

/7/-/1/

/4/-/1/

/8/-/1/

/5/-/1/

/9/-/1/

/6/-/1/

/10/-/1/

1 103.87 - 105.56 104.30 104.01 103.93 90.24 101.41 102.62 102.86 -
1.62

-13.13

0.41

-2.37

0.13

-1.20

0.05

-0.98

2 286.33 - - 292.05 288.98 287.48 - 233.63 269.63 277.27 -
-

-

2.00

-18.41

0.92

-5.91

0.40

-3.17

3 561.33 - - - 573.31 569.09 - - 438.46 506.55 -
-

-

-

-

2.14

-21.89

1.38

-9.76

M
o
d
e

When using ALIN, if the beam is not divided into 
smaller segments, i.e. if the beam is a single fi-
nite element, the first and the second vibration 
mode in planes xy and xz exists for simply sup-
ported spatial beam (tables 1-2) since its non-
homogeneous boundary conditions allow such 
deformation, i.e. vibration mode. When using the 
commercial code TOWER in this case there is 
no vibration mode, because TOWER uses the 
concentrated mass matrix, as opposed to ALIN 
which is using consistent mass matrix. Circular 

frequency of the first, i.e. the second vibration 
modes in planes xy and xz of the spatial sim-
ply supported beam, using the code ALIN, is 
different from the exact solution by 10.99%, or 
27.16%, if one uses a single finite element.

If discretization of the beams into smaller seg-
ments is done, the following results are obtained. 
Considering the spatial simply supported beam 
(tables 1-2), circular frequency of the first mode 
in xy and xz planes obtained by ALIN is different 
from the exact solution by 0.39% for two finite 
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elements, 0.08% for three finite elements, and 
0.01% for five finite elements. Using the code 
TOWER, the difference is -1.10%, -0.45% and 
-0.33%. Circular frequency of the second mode, 
obtained by ALIN, is different from the exact so-
lution by 10.99% for two elements, 1.18% for 
three elements and 0.17% for five elements, 
while using TOWER the error is -4.17% for three 
finite elements and -1.58% for five elements. For 
the third mode the circular frequency obtained 
by ALIN is different by 23.99% for two elements, 
10.99% for three elements and 0.79% for five fi-
nite elements, while when using TOWER the er-
ror is -9.71% for four finite elements and -8.12% 
for five elements. Therefore, when using TOW-
ER, if one uses two finite elements for a beam 
there are no second and third vibration modes 
of the spatial simply supported beam in planes 
xy and xz, while when three elements are used 
there is no the third vibration mode, since TOW-
ER is using concentrated mass matrix.

When considering the spatial clamped-clamped 
beam (tables 3-4) circular frequency of the first 
vibration mode in xy and xz planes, obtained us-
ing ALIN, is different from the exact solution by 
1.62% for two finite elements, and 0.05% if us-
ing five elements. If using TOWER, the error is 
-13.66% for two elements and -1.62% for five el-
ements. Circular frequency of the second mode, 
obtained using ALIN, is different from the exact 
solution by 2% for three elements and 0.4% for 
five elements, while using TOWER the error is -
19.49% and -4.62%. When considerting the third 
mode, using ALIN and four elements obtained 
error is 2.14%, while using five elements, the er-
ror is 1.38%. On the other hand, using TOWER 
and four and five elements, errors are -23.63% 
and -12.09%.

Analysing obtained results one may notice that 
circular frequencies of free vibrations of consid-
ered beams using two finite elements and code 
ALIN are approximately correct only for the first 
mode (error is 0.39% for simply supported beam 
and 1.62% for clamped-clamped beam). Using 
the code TOWER and discretization of a beam 
into two finite elements one may notice that the 
circular frequency of simply supported beam is 
approximately exact for the first mode (error is 
-1.10%), while for the clamped-clamped beam 
obtained result is not correct, since the error is 
larger then 10% (13.66%).

Therefore, when determining circular frequen-

cies especially for higher modes, in order to ob-
tain more correct results, it is necessary to divide 
beams into as much finite elements as possible. 
However, since ALIN is using the consistent 
mass matrix, division into finite elements may be 
smaller (i.e. less finite elements) then when us-
ing TOWER.
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