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The expression stiffness matrices used in the study of tensegrity structures has inherited a formula-
tion initially conceived for the shape finding problems of tension structures. Nevertheless stiffness 
and geometrical stiffness matrices are well known concepts of structural analysis and all the formula-
tions which are used need to be congruent.  In this paper, we present a formal discussion about the 
formulations used in several publications showing that they are not equivalent. A classic example is 
presented, which has been solved using several expressions available in the relevant literature, the 
results have been compared with a classical finite element software, showing the discrepancies. 

INTRODUCTION

Stiffnessis a concept that has been widely stud-
ied in the context of tensegrity structures. Since 
a tensegrity structure is a pin-jointed structure, 
the classic formulation of structural analysis has 
to be applicable [01]. For a general understand-
ing, Force=Stiffness•displacement.
In structural analysis, once the stiffness matrix 
of each element in global coordinates has been 
obtained (using the transformation matrix, T–
Figure 1-), the structural stiffness matrix of the 
whole structure, KT, is obtained by appropriately 
assembling the stiffness matrices of each one of 
its members. 

For the sake of simplicity and without loss of 
generality, just 2-D elementsare going to be con-
sidered in this work. 
A 2-D truss element is represented in Figure 1. 
It goes from node 1 to node 2. The Cartesian 
coordinates of these nodes with respect to the 
global reference system are (x1, y1) and (x2, y2) 
respectively. In Figure 1 the transformation ma-
trix, T, which connects local and global axes is 
indicated. We have been using this uncommon 
order of coordinates to connect it with the no-
tation used in the shape-finding problem of ten-
sion-compression structures. 

Figure 1: Transformation matrix for a 2-d truss.
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From structural analysis, it is known that the lin-
ear stiffness matrix and the geometrical stiffness 

matrix of a 2-D truss member in local coordinates 
are given respectively, by:

(1)

with N as the axial load acting in the member.
Using the transformation matrix, T, given in Fig-
ure 1, the local stiffness matrix indicated in Eq. 
(1) can be expressed in global coordinates as:

(2)
Operating in Eq. (2) the following values of both 
matrices of the member in Figure 1 have been 
obtained:

From Figure 1 it is evident that:

(3.a)

(3.b)

(4)

and therefore, both stiffness matrices in Eq. (3) 
can be re-written as function of the Cartesian co-
ordinates:

The elastic stiffness matrix is based on the un-
deformed configuration of the structure (which 
does not depend on the loading conditions of the 
structure) whereas KG, the geometric stiffness 
matrix, accounts for the geometrical second or-
der effects and depends on the axial force in the 
element. 
The tangent stiffness matrix of the structure, KT, 
is given by: KT = KE + KG.

In the context of tensegrities structures, authors 
[2-3] stated that the linear stiffness matrix, KE, 
and the geometrical stiffness matrix, KGhave 
been given respectively, by:

(6)

(7)
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Veenendaal and Block in [4] also proposed Eq. 
(7) for the geometrical stiffness matrix, KG, but 
for the lineal stiffness matrix, KE, they proposed 
the expression: 

(8)

In the former equations  represents the tensor 
product and A is the equilibrium matrix, defined 
as: 

(9)

with C as the connectivity matrix (which is de-
fined below) and x, y and z the node coordinate 
vectors in x, y and z directions respectively.
E is the modulus of Young
Ω is the area of the cross-section of each mem-
ber
L is the length of each pre-stressed member 
Id is the unit matrix in Rd (d is the dimension of 
the structure: 2 for planar structures and 3 for 
3D structures)
D is the force density (or force/length coeffi-
cient) matrix, defined as:

(10)
with:        

(11)
The i-component of vector q is the axial force to 
length ratio of member i (i.e. qi=Ni/Li). b is the 
number of branches or members of the tenseg-
rity structure.
The connectivity or branch-node matrix C,as 
discussed in[5], defines the connectivity of the 
nodes. It has one row per member in such a 
manner that each branch or connection j links 
two nodesi and k, written asi(j) and k(j) and  are 
ordered so  that i<k, indicating that they are part 
of the branch j, and the i and k elements of the j 
row of C are set to 1 and -1 respectively, as fol-
lows:

(12)

The linear stiffness and geometric stiffness ma-
trices of the 2D truss member shown in Figure 
1 obtained from Eq. (6), (7) and (8) are, respec-
tively:
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It is obvious that neither Eq. (13a) nor Eq. (13c) 
represent the linear stiffness matrix of the ele-
ment. In the case of Eq. (13a) it is evident from 
a simple dimensional analysis. From the inter-
pretation of the stiffness coefficients as displace-
ment influence coefficients, Eq. (13c) cannot 
represent the linear stiffness matrix because it 
leads to uncoupled nodal forces and displace-
ments, that is, a nodal x-force would only arise 
if a nodal x-displacement is prescribed, which is 
not true.
In relation to the geometric stiffness matrix, KG, 
expression given by Eq. (13b) can be obtained 
from the strain energy accumulated in an elastic 
element subjected to axial loading assuming that 
the final and initial positions are close enough, a 
linear deformation field within the element and 
considering the tensor of Green-Lagrange strain 
tensor. It can be proved that theKG matrix given 
by Eq. (13b) remains unchanged with respect to 
the change of axes. According to Němec et al. 
[6], the geometric stiffness matrix in Eq. (13b) 
introduces an unrealistic axial stiffening and 
lead to convergence problems, inaccuracies and 
even singularities for extreme compression. So, 
in order to avoid the above mentioned problems, 
the geometric stiffness of truss elements given 
by Eq. (1) or Eq. (5b), in local and global axis 
respectively, is widely used in structures. 
If the notation employed in the form-finding prob-
lem of tension structures [5] is used, the classic 

(14.a)

(14.b)

linear stiffness and geometric stiffness matrices 
(i.e. Eq. (5a) and (5b), respectively) can be for-
mulated as:

At first sight,none of the stiffness matrices pre-
sented here (Eq.6, Eq.8 and Eq.14a) coincide. 
Obviously, the geometric stiffness matrices (Eq.7 
and Eq.14b) do not coincide. It is clear that this 
point needs both clarification and homogeneity 
for future research and applicability.  

EXAMPLE

In order to comment on both the influence and 
the validity of the foregoing expression of the 
stiffness matrix, the 2D tensegrity represented in 
Fig. 2, comprising 9 members and 6 nodes, has 
been analyzed. This structure is one of the most 
studied. Among other researchers’ work, we can 
find it in [02, 03, 07].  The members are pin-con-
nected at the perimeter, and do not intersect at 
the center.

Figure 2: a) Equilibrium configuration of the 2D tensegrity (wider gray lines (1 to 6) represent struts while thin 
black lines (7 to 8) represent cables); b) connectivity matrix; c) axial force to length ratios; d) coordinates of 

the points. Unit: N and m.
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It is known that for a given structure, the momen-
tat which buckling occurs (condition of elastic in-
stability) may be expressed as a linear function 
of the displacements, as follows:

(15)

where KE= the elastic structure stiffness matrix 
based on the undeformed configuration, KG= 
the geometric stiffness matrix, which is defined 
in terms of a particular load pattern and accounts 
for second-order effects, and d= the vector con-
taining the displacements at the degrees of free-
dom used in a discrete model of the structure. 
For a given load pattern, it is useful to express 
the geometric stiffness as a reference loading 
multiplied by a load factor μfor evaluating the 
critical buckling load of the structure:

(16)

This is possible because the geometric stiff-
ness matrix is proportional to the axial loads in 
the members of the structure. Consequently, in 
the following formulation, the loading applied to 
the structure is considered to be proportional to 
an initial loading pattern multiplied by the scalar 
μ; that is, the relative distribution of the external 
loadsapplied to the structure is constant. A de-
tailed discussion about this property of the geo-
metric stiffness matrixas well as a development 
of Eq. (15) and (16)can be found in Clough and 
Penzien’s text book [08].In this case, the initial 
pattern of KG0corresponds to the self-equilibrat-
edaxial forces which pre-stress each branch in 
the equilibrium configuration, i.e,   -see Figure 
2-. The substitutionof Eq. (16) into Eq. (15) leads 
to thewell-known eigenvalue buckling problem:

(17)

A non-trivial solution from the lineal stability anal-
ysis - Eq. (17)-can be obtained if:

(18)

The smallest value of μthat satisfies Eq. (18)cor-
responds to the critical load multiplier of the 
structure [09].
In this example, the cross-sectional area of each 
branch and theelastic modulus are equal to 100 
mm2 and 200000 MPa, respectively. 
In Table 1 the obtained eigenvalues of the buck-
ling problem corresponding to the tensegrity in 

Figure 2 are summarized. In Table 1, the ex-
pression from which each matrix is obtained is 
indicated in the first two columns. The last row 
shows the critical load multiplier obtained using 
the ANSYS© software, members were modeled 
with the LINK8 element type. The pre-stressed 
loads were introduced through initial strains to 
simulate tension or compression. 
From comparison of the two last rows in Table 
1, it is evident that the result obtained from FE 
analysis coincides with the theoretical one ob-
tained from the proposed matrices Eq. (14 a. 
and b).

Buckling eigenvalue: │KE - μ KG0 │= 0
KE KG0 μ

Eq. (6) Eq. (7) 2.50•107

Eq. (8) Eq. (7) 2.79•107

Eq. (14a) Eq. (14b) 2.21•107

FE analysis with ANSYS 2.22•107

Table 1: Summary of eigenvalues of the buckling 
problem obtained considering different matrices and 

using finite element analysis

CONCLUSION

In the context of tensegrity structures, the stiff-
ness matrix can be obtained from the two ma-
trices used in the shape-finding problem of pin-
jointed structures (matrix A given in Eq. (9)) and 
the force to length ratios (matrix D given in Eq. 
(10)). Expressions for both, linear and geomet-
ric, stiffness matrices have been presented. 
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