
Journal of Applied Engineering Science

441

doi:10.5937/jaes16-18433 Paper number: 16(2018)3, 551, 441 - 446
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ROMANOVSKIJ LINEAR PARTIAL INTEGRAL EQUATIONS
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The study of Markov chains with two-way coupling leads to the solution of linear partially integral equations of the 
second kind in the space of functions continuous on the square. A characteristic feature of the equations is the 
permutation of  variables for the unknown function under the integral sign and integration over part of the variables. 
Equations of such types are not Fredholm integral equations and for their study a well-developed theory of  Fredholm 
integral equations of the second kind can’t be directly applied. The  equations  considered in the article we call par-
tially integral equations of Romanovskij, who first obtained them in the study of Markov chains with two-way coupling 
and studied these equations in the case of continuous kernels. An explicit solution of partially integral Romanovskij 
equations can be found in rare cases, and therefore the problem of studying approximate and numerical methods 
for solving such equations is vital. When using approximate and numerical methods, it should be taken into account 
that the linear partially integral operator in the Romanovskij equation is not completely continuous, and the direct 
application of methods associated with the complete continuity of operators for its solution requires justification. The 
justification of approximate and numerical methods for solving linear partially integral equations of Romanowskij is 
given in the annotated paper. The paper contains theorems on the solvability of equations, results on various approx-
imate and numerical methods for their solution, the theorem on the solution of linear partially integral equations by 
Romanovskij, using the method of mechanical quadratures, together with an estimate of the rate of convergence of 
a numerical solution to an exact solution of this equation.
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INTRODUCTION

Markov chains play an extremely important role in the 
study of various problems of technology, genetics, phys-
ics and other problems.
The problems of doubly connected and multiply connect-
ed Markov chains are reduced to integral equations first 
studied in the case of continuous given functions by V.I. 
Romanovskij [01]. Solutions of such equations can be 
found explicitly in rare cases, so it is important to develop 
approximate and numerical methods for their solution.
Approximate and numerical methods for solving the in-
homogeneous integral Romanovskij equation: 

(1)

are being considered in this article.
The singularity of equation (1) is connected with the re-
arrangement of variables for the unknown function under 
the integral sign and integrating it in one of two variables. 
Because of this, the operator M in equation (1) is not inte-
gral (since the criterion of A.V. Bukhvalov [02]) on the in-
tegral representation of a bounded linear operator is not 
fulfilled) and is not completely continuous.
Fundamentals of the theory of equation (1) with a con-
tinuous kernel are constructed by V.I. Romanovskii [01], 
using methods analogous to the method of Fredholm de-
terminants, in [03] studied more general classes of linear 

integral equations of Romanovskii type with partial inte-
grals and kernels of more general types. We note that 
the Fredholm property of equation (1), whose kernel is a 
continuous function by (t,s)  with values in the space of 
summable functions, is established in [04] for the case of 
a space of continuous functions.
The conditions for the equivalence of equation (1) to the 
Fredholm integral equation of the second kind and the 
conditions for the invertibility of these equivalent equa-
tions in the space of functions continuous on the square 
are contained in Theorem 1; in Theorem 2 conditions for 
the unique solvability in the space of continuous func-
tions of equation (1) and the conditions for which equa-
tion (1) either has no continuous solutions, or has more 
than one continuous solution are given.
Next, we study the approximate solution of the invertible 
equation (1). This equation is replaced by a linear par-
tially integral Romanovskij equation with a degenerate 
continuous kernel close to the kernel m. The solution of 
the approximate equation is constructed explicitly, and 
the estimate of the error of the approximate solution of 
equation (1) is given.
For other methods of approximate solution, equation (1) 
is reduced to a system of Fredholm integral equations 
of the second kind with an additional condition for solu-
tions or is transformed into a two-dimensional integral 
Fredholm equation of the second kind with a degenerate 
kernel.
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Numerical schemes for solving equation (1) with a con-
tinuous kernel are constructed. The integral equation (1) 
is replaced by a system of linear algebraic equations, 
whose solution tends to the solution of equation (1) for 
an unrestricted refinement of a segment [a, b]  .
Another method of numerical solution of equation (1) is 
associated with the replacement of this equation by a 
system of linear integral equations of the second kind 
with an additional condition and the replacement of this 
system by a system of linear algebraic equations with an 
additional condition on the solution. Theorem 3 shows 
the conditions under which the solution of equation (1) 
can be found by the method of mechanical quadratures, 
and the rate of convergence of the numerical solution to 
the exact solution is given. 

RESULTS AND DISCUSSION

CONDITIONS ON THE SOLVABILITY  
OF EQUATION (1) 

Let D= [a, b]x[a, b], C=C(D), be the space of functions 
continuous on D, L1, be the space of summable functions 
on [a, b], C(L1) be the space of continuous vector-valued 
functions (t, s)      z(t, s, ., .)      L1 (D) and let m     C(L1).
By [03], the operator M acts and is bounded in C.  As 
noted above, the operator M is not a completely contin-
uous integral operator in C. However, the operator M2  is 
a completely continuous integral operator in the space 
C  [05].
Indeed, applying the Fubini theorem, we establish the 
equality: 

→ ∈ ∈

It can be verified directly that                                               
where C(L1 (D)) denotes the space of continuous vec-
tor-valued functions                           E            . Then M2 is 
a completely continuous integral operator in C.
Consequently, Fredholm’s theorems hold for equation (1) 
with kernel from C(L1).
Suppose that 1 is not an eigenvalue of the operator M2.   
By the theorem on the spectrum map       is not a point of 
the spectrum of the operator                            Therefore, 
(1) has a unique solution x(t, s). Therefore, x(t, s) is the 
unique solution of the integral equation: 

)),((),,(),,( 1 DLCtmstm ∈⋅⋅⋅

).(),,,(),( 1 DLstzst ∈⋅⋅→

1±
).(1: MM σ∈/±

(2)

Conversely, let equation (4) have a unique solution x(t, 
s).   Equation (2) can be written in the form: 

(3)

where I is the identity operator on C. Since equation (3) 
with a completely continuous operator M2  has a unique 
solution, then                 .  Then the operator I+M is in-
vertible in C . 

)(1 Mσ∈/

Applying the operator (I+M)-1 to both sides of equation 
(3) to the left and taking into account that                   we 
get that x(t,s) is the unique solution of equation (1). Thus, 
in the case under consideration, equations (1) and (2) 
are equivalent and have a unique solution x(t,s).   
If, however, 1 is an eigenvalue of the operator M2 and 
                        then by (3) the operator I+M is invertible in 
C.  Applying the operator (I+M)-1 to both sides of equation 
(3), we obtain the equivalent equation (1).
Thus, it is valid
Theorem 1.  Let m ϵ C(L1)   and f  be an arbitrary function 
in C. Then the following assertions hold:

a. if 1  σ(M2)  then in C the equation (1) and the Fred-
holm integral equation of the second kind (2) are 
equivalent and invertible;

b. if 1ϵσ(M2)  and 1   σ(M2) then in C  the equations (1) 
and (2) are equivalent.

We note that the equation x=Ax+f with linear bounded 
operator A  in C  is considered (here and below) invertible 
in C  if the operator I-A is invertible on C.   
Suppose that the condition of Theorem 1 is satisfied. 
Then in C equations (1) and (2) are equivalent.
Let                                                                        where 
mϵC(L1). Since the kernel                                                                       where   
mϵC(L1) is the space of continuous vector-valued functio
ns                                                    and C(L1(D))   is real-
ized as a tensor product of the spaces C and L1(D)   with 
a cross-norm,  which coincides with the norm in C(L1(D))     
[06], and the set of continuous functions from the space 
C(DxD) is everywhere dense in C(L1(D)), then: 

),(1 Mσ∈/±

),(1 Mσ∈/±

∈/

∈/

),,,(),,(=),,,( 11 σσσσσ tmstmstk
))((),,,( 1

1 DLCstk ∈σσ

)(),,,(),( 1 DLstzst ∈⋅⋅→

(4)

where: 

and kj and      are continuous functions on D and the 
functions kj  are linearly independent, and the functions 
    are orthonormal in the usual sense.
Substituting (4) into (2) we obtain, 

jk~

jk~

(5)

where 

(6)

By virtue of [07]

(7)
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Therefore, the operator I-K0 has a bounded inverse op-
erator in C and 

(7)

where 

and 

Then equation (5) can be written in the form 

(8)

Taking (7) into account, we obtain an integral equation 
with a degenerate kernel: 

(9)

where 

Assuming

we obtain a system of linear algebraic equations 

(10)

Thus, it is valid.
Theorem 2.  Let m ϵ C(L1) and f ϵ C.  Then the following 
assertions hold:

a. if the principal determinant of system (10) is not 
equal to zero, then equation (1) has a unique solu-
tion continuous on D;

b. if the principal determinant of system (10) is zero, 
then in C equation (1) either has no solutions, or has 
a finite number of linearly independent solutions.

AN APPROXIMATE SOLUTION OF EQUATION (1) 

An approximate solution in C  of equation (1) with a ker-
nel from C(L1)   and a continuous function f(t,s) is a rather 
effective replacement of the kernel by a degenerate one.
We assume that equation (1) with kernel m ϵ C(L1) and 
function f ϵ C is invertible in C. By virtue of the stability 
of the invertibility of equations with respect to sufficiently 

small perturbations [08], there is a ϵ>0, such that equa-
tion:

(11)

is invertible for  

Solutions of equations (1) and (11) can be written in the 
form: 

By virtue of 

we get

(12)

where c is a constant. If now 

(13)

then from (12), (13) and the formulas for the norm of the 
Romanowskij operator [03], we have  

Thus, the operators                   and                    differ 
little in norm, if the kernels of equations (3) and (13) are 
sufficiently close.
Taking (12) into account, we obtain the following esti-
mate: 

(14)

It shows that the number                is sufficiently small if 
(13) holds. The application of the estimate (14) is related 
to the estimate of the constant c. In the general case, ef-
fective estimates of the constant c are unknown. Howev-
er, any known upper bounds for the numbers             and 
             lead to an upper estimate for the constant c.  
Let us cite one such estimate. Similarly to [03], the equal-
ities 

where                                        are some functions.
If now 

where the known functions 
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then by virtue of the estimate of the norm of an operator 
of Romanovskij type with partial integrals in C [03], from 
(14) implies the estimate 

We show that when the kernel of equation (1) is replaced 
by a degenerate kernel, the Romanovskij equation is ob-
tained, whose solution is constructed explicitly.
Suppose that in (11) 

(15)

where lj, mj, nj   are continuous functions on [a, b].   
Substituting (15) into (11), we obtain 

(16)

We set 

(17)

Then 

(18)

Substituting (18) into (17), we obtain the system 

(19)

where 

Assuming 

(20)

in view of (19) we obtain

(21)

Substituting (21) into (20), we obtain the system 

(22)

where 

Thus, the integral equation of Romanowskij (11) with the 
degenerate kernel (15) reduces to system (22), whose 

solution can be found as the union of the solutions of   
systems obtained from (22) for each fixed j=1,...,n. Since 
equation (11) has a unique solution, each of these sys-
tems has a unique solution. Consequently, system (22) 
has a unique solution. Substituting this solution of sys-
tem (22) into (21), we obtain                         The only 
solution of equation (11) is now obtained by substitution 
of the found                                in (18).
Another method of approximate solution of equation (1) 
is connected with the transition to an equivalent problem 
for the system of linear integral equations of Fredholm 
of the second kind with a parameter and the subsequent 
approximate solution of this problem.
Indeed, let

Then    

and equation (1) can be written in the form of the system 

(23)

Fredholm integral equations with parameter t in which 
the unknown function satisfies the additional condition 

(24)

If                     then problem (23) / (24) is equivalent to 
equation (1), has a unique continuous on D solution (y(t, 
s), z(t, s)). 
Thus, under the condition                  the approximate 
solution of equation (1) reduces to an approximate solu-
tion of the system (23) and verification of equalities (24), 
understood as approximate equalities.
Another method of approximate solution of equation (1) 
for                    is associated with the transition to the 
Fredholm integral equation of the second kind (2) and 
the replacement in (2) of the kernels by formula (4), in 
which the kernel                                 is chosen equal to 
zero, and the sum is chosen so that: 

),(1 Mσ∈/

),(1 Mσ∈/

)(1 Mσ∈/±

),,,( 10 σσstk

where             is an arbitrarily small number. As a result, 
we obtain the Fredholm integral equation of the second 
kind with a continuous degenerate kernel: 

0>ε

(25)
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where the function g(t, s) is determined by the formula 
(6). For sufficiently small               , equation (25) is invert-
ible and is solved in the standard way.

NUMERICAL SOLUTION OF EQUATION (1) 

We consider equation (1) with continuous given func-
tions f(t, s) and                   where  
The following approximation scheme is justified by V.I. 
Romanovskij in [01] and can be used for the numerical 
solution of equation (1).
The segment [a, b] is divided into parts of length   by 
points: 

0>ε

),,,( σstm ].,[,, bast ∈σ

δ

We set   

and let        denote the determinant of the system of linear 
equations 

∆

(26)

If now               then just as in Fredholm theory, system 
(26) approximates equation (1), and its solution tends to 
the solution of equation (1) [01].
Thus, an approximate numerical solution of equation (1) 
can be found as a solution of system (26). We note that 
this solution (26) is obtained under the condition           .For 
sufficiently large n this condition means that   
Another method for the numerical solution of equation 
(1) is based on the numerical solution of problem (25)/
(26) with the use of quadrature formulas. For example, 
using the formula of left rectangles, the segment [a,b]   
splits into n equal parts by points   

where   

and the system (25) is replaced by the system 

,∞→n

0.=/∆
)(1 Mσ∈/

(27)

where    

The system (27) is solved for each fixed i=0,1,...,n-1, its 
solution reduces to solving n systems of linear algebraic 
equations [09].  Since for each fixed tϵ[a,b] the system 
(23) is a system of linear integral equations with com-
pletely continuous integral operators, then for               the 
solution                    of the system (27) tends to
where  

∞→n
),( )()( n

ij
n

ij zy ),( ijij zy
).,(=),,(= jiijjiij stzzstyy

The verification of equality (24) reduces to estimating the 
smallness of the number  

The approximate values of the solution of equation (1) 
are calculated by the formula: 

by sufficiently small  
We note that the direct application of quadrature formu-
las to equation (1) with continuous given functions f(t,s) 
and m(t,s,σ) causes difficulties due to the fact that the 
operator M in equation (1) is not completely continu-
ous, and the well-known arguments of the mechanical 
quadrature method for Fredholm integral equations use 
the complete continuity of integral operators, which de-
termine such equations.
However, if                 then the method of mechan-
ical quadratures is applied not to equation (1), but to 
the equivalent reversible equation (2) with a completely 
continuous integral operator M2.  This uses the cubature 
formula: 

δ

),(1 2Mσ∈/

(28)

where   

It is assumed that the quadrature process (28) converg-
es: for any function fϵC(D) the condition 

 
be realized.
Equation (2) can be written in the form 

(29)

where   

and g(t,s) is a function (8). Setting t=tp, s=sq    in (29) and 
replacing the integral by the formula: 

where    

and rpqPQ is the remainder, we get the system, after dis-
carding the remainders in the equations of which we will 
have a system of equations 

(31)

where xij = x (ti, sj). 
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By [10], we have
 Theorem 3.  Let the following conditions hold:

1. for each P and Q the coefficients               of  
formula (30) are positive and there exists a number 
G such that  

2. the process (28) converges;
3. X0ϵC is a solution of equation (29).

Then for sufficiently large P and Q the system (32) has 
the solution     

ijPQγ

GijPQ ≤γ

and the rate of convergence is estimated by inequalities  

where c1 and c2 are positive constants,  

,|),(|max 20
,11

1 PQqppq
QqPp

PQ RcstxxRc ≤−≤
≤≤≤≤

The analytic approximation of                  to the solution 
               of equation (29) is naturally defined by: 

),( stxpq
),(~ stx

We note that Theorem 3 was established in [11]. 

CONCLUSION 

To solve the partially Romanovskij integral equation (1), 
it is possible to use other methods of numerical solu-
tion of integral equations. However, when applying such 
methods directly to the equation (1), one should take into 
account the absence of complete continuity for the oper-
ator M. If the applied method is connected with the com-
plete continuity of the integral operator, then by applying 
this method to the Romanovskij integral equation (1) 
this method next substantiate for equation (1)  directly, 
or apply it to equation (2) with a completely continuous 
integral operator, or apply it to the numerical solution of 
problem (23) / (24) for the system of Fredholm integral 
equations second kind with parameter t and the com-
pletely continuous  integral operators.
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