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REINFORCED CONCRETE STRUCTURES
Vladimir Kolchunov*, Aleksey Dem'yanov, Maxim Protchenko
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The authors considered a simple method for constructing bend-torsion functionals by grid methods. Analysis of 
the diagrams of angular deformations and shear stresses made it possible to develop a new hypothesis of angular 
deformations. The consequences of the hypothesis were in the form of expressions from the analysis of diagrams. 
The authors also obtained functionals for determining angular deformations, bending and torque moments from the 
compressed area of concrete and reinforcement. The projection ratios helped to determine the shear and normal 
stresses through deformations using diagrams. The filling of the diagrams was in the form of expressions using func-
tionals. The authors recorded expressions for determining the filling of the diagrams, as well as the total bending and 
torque moments.
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INTRODUCTION

Experimental and theoretical studies in the field of tor-
sion with bending are associated with the need to devel-
op a design scheme and take into account a number of 
new effects of deformation of reinforced concrete with 
spatial cracks. Some of the earliest research in the field 
of torsion with bending were presented in [1-2]. A large 
theoretical and experimental basis for the development 
of the theory of bending with torsion is described in -pub-
lications [3-6], [7-9]. The main task is to develop mod-
els that allow describing the behavior of structures at all 
stages of loading. Rectangular cross-sections are one of 
the most applicable, therefore the research of this type 
of cross-section is most important [10-13]. However, the 
complex stress state has not yet been sufficiently consid-
ered in scientific publications [14-23].
There is a problem of searching for a new hypothesis 
of linear and angular deformations for rectangular sec-
tions and determining the filling of curvilinear diagrams 
in bending with torsion. It is necessary to use the ana-
lytical functional and special functions for deplanation of 
the cross section to obtain practical models. Engineering 
proposals have not been found for projecting the coeffi-
cients of the stress-strain and elastoplastic state from the 
stress and strain diagram.

Research methods

Determination of deformations and stresses in a com-
plex stress-strain state in a rectangular section can be 
obtained from the Timoshenko-Goodyer theory of elas-
ticity [24] using a membrane analogy.
The function of Timoshenko and Goodyear [24] can be 
represented as:

*f=Y f⋅ (1)

Where

AG φ bY=
π

⋅ ⋅ ⋅ 2

3

8

φA – torsion angle for cross-section in edge fibers of com-
pressed concrete or tensile reinforcement; f*– complex se-
ries of Timoshenko and Goodyer in the theory of elasticity.
This function is complex and time consuming to calcu-
late. Its calculation is rather difficult for plastic regions 
and regions with cracks. Therefore, a simple new method 
from the families of the mesh method was found to devel-
op deformation functionals for approximating any rectan-
gular mean sections in compressed and stretched zones 
using special squares (Fig. 1, a). A more frequent splitting 
of the cross-section was used with the use of other points 
to correct the values of the obtained function (Fig.1, b).

Figure 1: Approximating rectangular sections using 
special squares: (a) large parts of grid; (b) smaller parts 
of grid; leagues between points are functions along the 
y or z axes; z-leagues are not labeled for simplification
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We obtained the analytical first functional f5,*(y,z) after 
several adjustments: through function f1,*(y) (horizontal 
parabola about the y-axis) and function f2,*(z) (vertical pa-
rabola about the z-axis).

(( ) ( ) ( )

.

,* ,* ,*
b - yf y,z =f y f z =± - z +

b h

b - y y+ z+ -
b h b


⋅




⋅ 


2 2
2

5 1 2 2 2

2 2 2

2 2

3 47 200
25

487 2280 930 923
500 25



(2)

Where A(y), B(y), C(y) – functions;

( ) ;b - yA=-
b h

2 2

2 2
3 47 200

25
b - yB=

b h

2 2

2
487 2280

500

. yC= -
b

2

2
930 923
25

· – transition between functions; signs "+" and "-" are ad-
opted respectively for quadrants I, III and II, IV.
We had received an error of up to 2% at the considered points 
and to 7% at any points of the cross section when applying 
our functional to find the values of the functions (Fig. 1, b).
The analytic undefined second functional is a function of 
three functions:

. . . . . .. ( )
( )
. . . . . .( )

x h- z h- z h- z+ y - y-
l bh hb h

***f x,y,z =e -
h- z h- z - h+ z- y - y-

bh hb h

 − ⋅ ⋅ 
 

⋅ ⋅

2
2

3 84 22 96 2 88 12 3 0 34 0 363 19

2
2

9 39 27 02 7 16 17 39 0 306 0 232
(3)

The error is 15% for the first iteration and 2% for the 
second iteration.
We have developed a new hypothesis and formulated 
the definition. The proposed new hypothesis of angular 
deformations - the kinematics between fibers for the rel-
ative transverse fiber upper and lower total shear strains 
of concrete and reinforcement (γsum,b and γsum,s) to deter-
mine their ratios in distances from the neutral axis, which 
has a special geometric figure for the function fsum,y(signs 
"+", "-" taken for different quadrants), as well as the pa-
rameter  between concrete in plastic and elastic areas to 
obtain an equation with deformation fb,el.
Note: there is a special section 3-3, where the local corner 
regions do not have a kinematic connection between the 
outermost fibers through the neutral axis of the section.
We have determined the corollaries of the hypothesis. 
Corollary 1. The proportion for a trapezoid (section 2-2 
for y=b/8, b/4, 3b/8) and a triangle (section 1-1,  ) has the 
form (Fig. 2):

losγ φr =
r γ

⋅22

1 1
(4)

φlos - coefficient from to zero in the form of a parabola:

losφ =A y +B y+C⋅ ⋅2 (5)
From point 1 (γ·γmax; 0), point 2 (0; 0.5b) and point 3 (0; 
-0.5b) we got:

maxC=γ γ⋅ (6)

( , )
max-γ γ

A=
b

⋅
20 5 (7)

.
max max-γ γ +γ γ

B= =
b

⋅ ⋅ 0
0 5 (8)

( , )
max

los max
γ γ

φ =γ γ - y
b

⋅
⋅ ⋅ 2

20 5 (9)

Corollary 2. Reduction of the zone of compressed con-
crete from the load (Fig. 2) has the form:

( )k k,*
k,*

k

x h -x
x =

h -x
0

0
(10)

Corollary 3. The coefficients γ3 and γ4 were found from 
two pairs of triangles:

( )( ) ( )( )k* k k,* k k k,*

k* k

γ z + x -x γ z - x -x
=

γ z γ z⋅ ⋅
2 3

4 2

(11)

γ +γ =γ +γ2 2 3 4 (12)
The distances zk and zk* were found:

k k* k k,*z =z +x -x (13)

k,* k k k,*z z +x -x
=

γ γ4 3
(14)

( )k k,*
k,*

γ x -x
z =

γ -γ
4

2 4
(15)

( )
k

k k,*x -x γ
z =

γ -γ
2

2 4

(16)

The coefficient γ3 was expressed from the equations (10) 
and (11):

γγ =
γ

4
2

3 3
4

(17)

We got after algebraic transformations in equation (12):

γ -γ γ +γ =⋅4 3 4
4 4 2 22 0 (18)

The equation (18) can be solved by iterating.
Thus, the corollary of the hypothesis has the form:
Corollary 1. The proportion for a trapezoid of angular de-
formations is the ratio of a vector r1 to any point A and its 
horizontal projection r2. The proportion is used in a trape-
zoid (section 2-2, y=b/8, b/4, 3b/8), in a triangle (section 
1-1, y=0, r2=0), but is not used in a special section 3-3 
(y=0,5b). The coefficient φlos was obtained in the form of 
a parabola (9).
Corollary 2. The decrease in the distance from the neu-
tral axis of the compressed concrete under load is the 
proportion (10).
Corollary 3. Angular deformations γ3 and γ4 (17), (18)) 
with decreasing distance from the neutral axis of com-
pressed concrete can be found from the geometric pro-
portions (11), (12) in Fig. 2,с.
The component of the relative angular deformations γt,zx 
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Figure 2: Diagram of the shear strain of concrete and 
reinforcement in section 2-2: for stage I (a), for stage II 
(b), parameters from the corollary of the angular defor-

mations hypothesis (c)

was obtained from the undefined functional f5,*(y,z) ob-
tained above using differentiation:

,* ,*A
t,zx

df dfφ bYγ = - = - =
G(λ) dy dyπ

   ⋅ ⋅
⋅ ⋅   
   

2
5 5

3

8

( )Ay φ= h + hz- z
b h π
⋅ ⋅

⋅ 2 2
2 2 3

8 186 228 1200
25

(19)

Where f5,*–functional in (2);

( ) AG λ φ bY=
π

⋅ ⋅ ⋅ 2

3

8

φA – torsion angle for cross-section in edge fibers of com-
pressed concrete or tensile reinforcement.
The component of the relative angular deformations γt,yx 
was obtained in a similar way.

,* ,*A
t,zx

df dfφ bYγ = = =
G(λ) dz dzπ

⋅ ⋅
⋅ ⋅

2
5 5

3

8

( ) ( )A Ab - y φ b - y z φ
= -

hπ h π

⋅ ⋅ ⋅ ⋅ ⋅2 2 2 2

3 2 3

2 487 2280 48 47 200
125 25

(20)

The total shear deformations have the form:

sum,γ t,zx t,yxγ = γ +γ =2 2

( ) ( )( )Aφ= b h- z + y - h+ z +
h π

⋅ ⋅
22 2

2 3

2 487 5640 16 101 1320
125

( )+ y h + hz- z 


1
2 22 2 2256 229 202 1320

(21)

When passing from plastic to elastoplastic deformation 
at point 2, we get:

( )sum,γ sum,el zx,el yx,elf p. =γ = +γ =γ 2 22

( )( )(A
c *,γ c

φ b h- z -λ z +
h π

⋅ ⋅ ⋅


2
2 3

2 487 5640
125

( )( ))c *,γ c+ y - h+ z -λ z +⋅ ⋅
2

216 101 1320

( ) ( )( )c *,γ c c *,γ cy h + h z -λ z - z -λ z ⋅ ⋅ ⋅ ⋅ 

1
2 222 2256 229 202 1320

(22)

Shear strains from torsion have jumps in the diagram 
(Fig. 2, b). The deformation function during crack for-
mation fsum,γ,Δ1crc(jump 1 on the deformation diagram) is 
similar to the function from formula (22), only less by a 
coefficient kγ,sum:

sum,γ
sum,γ,Δ ,crc

γ,sum

f
f = =

k1

( ) ( )( )(A

γ,sum

φ= b h- + y - h+ +
k h π

⋅
22 2

2 3

21 487 5640 16 101 1320
125

( )+ y h + hz- z
22 3 2256 229 202 1320

(23)

Where fsum,γ – a function for calculating shear strains 
without cracks (22); fsum,γ,Δ1,crc – a function for calculating 
shear deformations in a section with one spatial crack at 
the end of the upper compressed region xB.
The function for the second jump during crack formation 
has the form:

sum,γ
γ,Δ sum,γ sum,γ,Δ ,crc sum,γ sum,γ

γ,sum γ,sum

f
f =f -f =f - =f -

k k
 
  
 

2 1

11 (24)

The function of deformations at the appearance of the 
second crack-trace has the form:

sum,γ,Δ ,tr sum,γ,Δ ,crc Δγ

sum,γ sum,γ
sum,γ sum,γ

γ,sum γ,sum γ,sum

f =f -f =

f f
= -f + =f -

k k k
 
  
 

2 1

2 1

When analyzing with the approximation of the branches 
of the graph of the Timoshenko-Goodyer function [24] 
and the first functional, we obtain an error of up to 7% 
(Fig. 3, a) and less than 1% (for Fig. 3, b).
We also get the coefficients for projecting normal and 
shear stresses using deformations from the diagrams 
"σx-εx", "τ-γ".
When analyzing with the approximation of the branches 
of the graph of the Timoshenko-Goodyer function [24] 
and the first functional, we obtain an error of up to 7% 
(Fig. 3, a) and less than 1% (for Fig. 3, b).
The authors obtained the coefficients and from points C, 
B, A, D using the projection of deformations and stresses 
for the Prandtl diagram with constraints: j=С, В, A, D; 
σx=εx·Eb(λ)=εx·ν(λ)·Eb;

b,i
b,j

b,i

σ
E (λ)=

ε
for point A-

,
i,el b

b,el
i,el

σ R
E = =

ε 0 0015

(25)
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Figure 3: Approximation of branches of graphs of 
Timoshenko-Goodyère functions (1) and our new first 

functional (2): in axes f5,*(y,z)-z (a), in axes f5,n,*(y,z)-y (b)

b,elμ = ,0 167 for point B-
.

i,bR b
bR

i,bR

σ R
E (λ)= =

ε 0 0020

.bRμ (λ)=0 251 for point C-
.

i,u b
b,u

i,u

σ R
E (λ)= =

ε 0 0035

,b,uμ (λ)=0 357 for point Fk-

k k k k

k k

x,u x,u
F b,F b b,F b,F

x,F x,F b

σ σ
tgα = =E (λ)=E v (λ),v (λ)=

ε ε E⋅

The coefficients φij for parameters with limited angular 
deformations at point C have the form:

( )
,zx

x ,u z ,u z x ,uzx,u
γ ,u

,u i,u ,u

ε -ε sin α+γ cos αγ
φ = = =

ε ε +ε

⋅

⋅
1 1 1 1

1 3

2 2
1 567

( )( )

, ( ) ( , )

pl b,u
x ,u z ,u

i,u ,u b,u i,u ,u

cτ +μ λ
ε -ε h

=
ε +ε E λ ε +ε

 
⋅ 

 ≤
⋅ ⋅ ⋅

1 1 0

3 3

2 1

1 567 1 567

(26)

Where α – angle between cross section and inclined section.
For the coefficient φγyx,u, we get:

,yx

yx ,u *,u ** zx,Mt,el
γ ,u

,u i,u ,u

γ k k γ
φ = =

ε ε +ε
⋅ ⋅
⋅1 31 567

(27)

The third undefined functional for bending moment is ob-
tained by integrating the special function fsum,Δ-d:

( )ε,int,vol sum,Δ-d x,sumf x,y,z = f dxdydz= ε dxdydz∫∫∫ ∫∫∫ (28)
Where

[ ]( ) ( )sum,V-d c cf =± B z-z +B h +z-z B B x±⋅ ⋅ ⋅ ⋅ ⋅1 2 0 3 4

*** *** *** ***
x x-λ +A -λ +A
l l±D y z -D x e +D e +D

   
   
   

 
⋅ ⋅ ⋅ ⋅ ⋅ 

  
1 2 3 4

parameters: s,mε
B =

h1
0

b,uε
B =

h2
0

sup
b,x

b b ε c

R
B = ε

E v ω z
⋅

=   ⋅ ⋅ ⋅4 1

1

* *

* *

t

rec rec

M a -bD =
G I a +b

⋅
⋅

2 2

1 2 2
***λD =
l2 2 D =

l3
1 ***CD =

l4

. . . . . .( ) ( )***
h- z h- z - h+ zC y,z = y - y-

bh hb h
⋅ ⋅2

2
9 39 27 02 7 16 17 39 0 306 0 232

*
ha =
2 *

bb =
2

The third definite functional before the formation of 
cracks has the form:

..

. .
( ) ( )

a-ς cbh*
ε,def,int,vol ε,int,vol - h - b

f x,y,z = f x,y,z
⋅

        

0 50 5

0 5 0 5 0

(29)

Third defined functional after cracking:

( )

( )

.

,
.

.

.

( )
B

B

II
ε,def,int,vol

x-x a-ς cb

sum,Δ-d sum,Δ ,Δ-d crc
b

a-ς cx b

sum,Δ-d sum,Δ ,Δ-d,crc
x-x - b

f x,y,z =

= f -f dxdydz+

+ f -f dxdydz

⋅

−

⋅

∫ ∫ ∫

∫ ∫ ∫

1

1

0 5

0 0 5 0

0 5

0 5 0

Where α - the distance from the support to the force,  - a 
spatial crack for projection onto the horizontal axis, - seg-
ments from 1/6·c to six cross-sections);

(30)

,crcsum,Δ-d,Δf
1 - special jump function on diagram of linear deformation.

The indefinite fourth functional for the torque is obtained 
after integrating function f5,*(y,z)(2):

, ,*( )

( ) ( ) ( )

**

y z

,

y z

=

f z,y = f dydz=

A y z +B y z+C y dydz=

+BA z z z+C

∫ ∫

 = ⋅ ⋅ 

⋅ ⋅
∫ ∫ ∫ ∫ ∫ ∫

⋅

∫ ∫

∫ ∫

5 5
0 0

2

0

3 2

0

2

2

2 2
3

(31)

The functions A∫ ∫
B
∫ ∫

C
∫ ∫

take the form:

ij

y

A = = y yA dy - +
h b h∫ ∫ ∫ 2 2

0

3

2
141 8
25 (32)

i

y

j
yB yB dy -
h b

=
h

=
∫ ∫ ∫

0

3

2
487 760
500 500

(33)

i

y

j
yC = = yC dy -

b∫ ∫ ∫
3

2
0

923 458
1000 375 (34)

The indeterminate torque Mt,i=(z,y) can be represented 
as a function of the torsion angle φA,i(z,y):

**, ,( ) ( ) ( )t,i A,iM z,y =Y φ z,y f z,y =
∫ ∫

⋅ ⋅2 5

,*
( ) ( )

y z

A,i
G λ b= φ z,y f dydz=

π
⋅ ⋅

⋅ ⋅ ∫ ∫
2

53
0 0

8 2

( ) ( )A,i
G λ b φ z= A,y

π
zB +z z+ C⋅ ⋅  ⋅ ⋅ ⋅ ⋅ ∫ ∫ ∫ ∫ ∫
⋅

∫ 
3

2

3
28 2 2

3

(35)
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Where ( )G λ bY =
π

⋅ ⋅ 2

2 3
8

,* ( )f z,y5 – functional (2).

The torsion angle φA,i for each point Ai of the cross-sec-
tion has the form:

**, ,

( )
( )

( ) ( )
t,i

A,i

M z,y π
φ z,y = =

G λ b f z,y
∫ ∫

⋅
⋅ ⋅ ⋅

3

2
58

( )

( )

t,iM z,y π
=

G λ b z z+B +CA z

⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ ∫
⋅

∫ ∫ ∫ ∫ ∫ 

3

2 3 228 2
3

(36)

Where
( )

t,sumt,i t,sum γ b,i b,iM z,y =γ ω z A⋅ ⋅ ⋅

or
( )

t,s,sumt,s,i t,s,sum γ,s s,i s,iM z,y =γ ω z A⋅ ⋅ ⋅

The definite fourth functional for the torque is obtained 
after integrating function f5,*(y,z)(2):

. .

,*,
, .

( ) ( )
b h

A
t

- b - h

G λ φ bM =Y f = f y,z dydz=
π

⋅ ⋅ ⋅
⋅ ⋅

∫ ∫ ∫ ∫
0 5 0 52

535
0 5 0 5

8 2

.=Y bh⋅⋅0 628 (37)
Where f5,*(y,z) – functional (2);

( )
.

tA MG λ φ b
bh

Y= =
π

⋅ ⋅ ⋅
⋅

2

3 0 628
8

. .

,*,
, .

( ) .
b h

- b - h

f b= f y,z dy d hz=
∫

⋅
∫ ∫ ∫

0 5 0 5

55
0 5 0 5

0 6282

RESULTS

The bending and torque moments for deformation or 
stresses were determined, as well as the filling area of 
the deformation and stress diagrams.
The indefinite bending moment and the definite bending 
moment for the small square are of the form:

( ) ( ) ( ) ( )bend,i b,i b b,c,i b,ε,i ε, int,vol,iM =v λ E A z z z f x,y,z =⋅ ⋅ ⋅ ⋅ 

( ) ( ) ( ) ( ) ( ) ( )bend,i *,i x,i b,i b ε,i b,c,i b,ε,i=Y I x,y,z =ε x,y,z v λ E ω x,y,z A z z z =⋅ ⋅ ⋅ ⋅ ⋅ ⋅

( ) ( ) ( )b,x,i σ,i b,c,i b,σ,i=σ ω x,y,z A z z z⋅ ⋅ ⋅ (38)
and

( ) ( )
n+

n+
n+

n
n

n

hbaII
bend,def,i b b b,c,i b,i ε,int,vol a b h

M =v λ E A z f x,y,z =
   ⋅ ⋅ ⋅ ⋅      

1
1

1

( )bend,c,i *,i x,i b,i b ε,i b,c,i b,ε,i=Y I =ε v λ E ω A z =⋅ ⋅ ⋅ ⋅ ⋅ ⋅

b,x,u σ,i b,c,i b,σ,i=σ ω A z⋅ ⋅ ⋅
(39)

Where νb,i(λ)  – elastoplastic coefficient;

( ) ( ) x,max,i
bend,i i i

A,i c,i

ε
Y =E λ =E λ

ρ z
⋅ ⋅

1

ωε,i(x,y,z); (ωσ,i(x,y,z)) – the filling area of the linear de-
formation (or normal stress) diagram for a small square;

,( ) ( )*,i b,c,i b,ε,i int,vol,i A,iI x,y,z =A z f x,y,z ρ =ε⋅ ⋅ ⋅

, ( ) c,i
b,c,i b,ε,i ε int,vol,i

x,i

z
=A z f x,y,z

ε
⋅ ⋅ 

zb,σ,i; (zb,ε,i(z)) – distance from a point Ai to the neutral axis 
of the cross section; Ab,c,i(z) – small square area;

,
c,i

*,i b,c,i b,ε,i ε, int,vol,i A,i b,c,i b,ε,i int,vol,i
x,i

z
I =A z f ρ =A z f

εε⋅ ⋅ ⋅ ⋅ ⋅ 

( ) ( ) x,max
bend,c,i i c c

A c

ε
Y =E λ =E λ

ρ z
⋅ ⋅

1

ωε,i; (ωσ,i) – numerical value of the filling area of the defor-
mation (stress) diagram for a small square; zb,ε,i(zb,σ,i) – nu-
merical value of distance; Ab,c,i – numerical value of area.
The filling area of the diagram ωε,def,i and the distance 
zb,i from point Ai to the neutral axis for indefinite bending 
moment have the form:

n+ n+ n+

n n n

a b h

sum,V-d
a b h

ε,def,i
b,x,i b,c,i

f dxdydz
ω =

ε A⋅

∫ ∫ ∫
1 1 1

(40)

and

( )

*( . ) . ( ) ( )

. ( )

i

i
i=

b,i c j

i
i=

i

* c c * c c * c c c
i= i

c j

* c c * c i
j=

S
z =z - =

A

λ z b z - λ z + z -λ z b z -λ z
=z -

λ z b+ z -λ z b

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ ⋅ ⋅

∑

∑

∑

∑

1

1

1

1

20 5 0 5
3

0 5

(41)

Where Si – moment of area; Ai – small square area.
The filling area ωε,i(x,y,z) of the diagram and the distance 
zb,i for indefinite bending moment have a similar shape.
The indefinite torque and the definite torque for the small 
square are of the form:

**, ,( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

t,

t,i A,i **,i t,*,i

t,sum,i b,i b,i γ,i b,γ,i b,i

t,sum,i τ i b,τ,i b,i

M z,y =Y φ z,y f z,y =Y z,y I z,y =

=γ v G ω y,z z z A z =
=τ ω y,z z z A z

∫ ∫
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

2 5

(42)

and

**, ,

( ) ( , )

, ( ) ( )

t,

t,def,i A,i **,i t,*,i

t,sum,i b,i b,i γ,def,i b,γ,i b,i

t,sum,i τ def,i b,τ,i b,i

t,b,sum,i *,γ c c *,γ c

t,b,sum c *,γ c c *,γ c

M =Y φ f =Y I =

=γ v G ω z A =
=τ ω z A =

= γ λ z z - λ z b+

+ γ z -λ z z -λ z b

∫ ∫
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

2 5

0 5
20 5
3

(43)

Where Gb,i – shear modulus for a small square; νb,i – 
elastoplastic coefficient;

,
( ) ( )t,*,i

bI y,z = f z,y l
π
⋅

⋅ ⋅
∫ ∫

2

3 5

8 ( ) ( ) ( )**,i A,iY z,y =G λ φ z,y
l

⋅ ⋅ 2
1

( ) ( ( ))
t,γ,i τ iω y,z ω y,z – filling area of the diagram of angu-

lar deformations (shear stresses); Ab,c,i(z) – small square area;

γ,def,iω ( )t,τ def,iω – numerical value of the filling area of the
angular deformations (shear stresses) diagram for a 
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Figure 4: Small square approximation (a) in compressed concrete and reinforcement for bending and torque  
moments: in the form of a curved trapezoid and other shapes (b-h); straight line for angles ζ (l, m, n) or angles at 

apex ζk or mean angles ζm (j)

small square; zb,γ,i(z) (zb,τ,i(z))– distance from a point Ai to 
the neutral axis of the cross section.
The filling area of the diagram ωγ,i(y,z) have the form:

**
( ) ( ), ,

( )

Y φ z,y f z,yA,i
ω =γ,i γ v λ G A zt,b,sum,u b b,c,i b,t,i

∫ ∫
⋅ ⋅

⋅ ⋅ ⋅ ⋅

2 5
(44)

The filling area ωγ,i(x,y,z) of the diagram and the distance 
zb,i for indefinite torque have a similar shape.
We have elastic, plastic regions and cracks (lateral, normal, 
etc.) in compressed concrete and reinforcement, Figure 4.
The total bending moments with cracks from small 
squares in compressed and stretched zones has the form:

( )

( ) ( )

( )

(

bend,sum b b b b sum,Δ-d

n,k

s,m,i,k s,i,k s,i,k b,x,u σ,i b,c,i b,i
k= i=
i=

n-m

s,rig,m,i s,rig,i s,i s,lef,m,i s,lef,i s,i
i=

s' ,ring,m,i s',rig,i s',i

M =v λ E A z f dxdydz+

+ σ A z = σ ω A z +

σ A z +σ A z +

+ σ A z +σ

m

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅

∫∫∫

∑ ∑

∑

1 1
1

1

)

( ( ) ( ))

m

s',lef,m,i s',lef,i s',i
i=

j
* *
sw,rig j j sw,lef j j

j=

A z +

q a -c ±q a -c

⋅ ⋅

⋅ ⋅

∑

∑
1

1

(45)

Where n – total number of small squares; m – the num-
ber of squares of the compressed area longitudinal re-
inforcement; k – transverse reinforcement with normal 
cracks and lateral cracks; j – cross-sections 1-6; ωσ – fill-
ing area for stress diagram.
The total torque with cracks has the form:

**, ,( ) ( )

( )

( ( ) )

( )

(

t,sum A,i

n,k

s,m,i,k s,i,k s,i,k
k=
i=

m

t,b,sum,u b γ,i b,c,i η,b, i
i=
n-m

s,rig,m,i s,rig,i s,i s,lef,m,i s,lef,i s,i
i=

s' ,rig,m,i s',rig,i s

M =Y φ z,y f z,y +

+ σ A z =

= γ v λ ω A z +

+ σ A b +σ A b +

+ σ A b

∫ ∫
⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅

∑

∑

∑

2 5

1
1

1

1

)

( ( ) ( ) )

( ( ) ( ) )

*

m

',i s',lef,m,i s',lef,i s',i
i=
j

sw,rig,i j j η,i sw,lef,i j j η,i,
j=

j

sw,σ,rig,i j j η,σ,i sw,σ,lef j j η,σ,i,*
j=

+σ A b +

+ q a -c z ±q a -c z +

+ q a -c z ±q a -c z

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

∑

∑

∑

1

1

1

(46)

Where n – total number of small squares; m – the num-
ber of squares of the compressed area longitudinal re-

       Istraživanja i projektovanja za privredu ISSN 1451-4117 
Journal of Applied Engineering Science Vol. 19, No. 4, 2021



Vladimir Kolchunov, et al. - The new hypothesis angular deformation and filling of 
diagrams in bending with torsion in reinforced concrete structures

978

inforcement; k – transverse reinforcement with normal 
cracks and lateral cracks; j – cross-sections 1-6; Y2 –see 
(35); φA,i(z,y) – see (36); ωγ,i – filling area for diagram of 
shear deformations; zη,b,i, bs,i, bs',i, zη,σ,i, zη,σ,i,* – distance 
from point O* to any point.

CONCLUSIONS

1. A simple method from a family of mesh methods was
found for developing linear and angular deformation
functionals by approximating rectangular sections in
compressed and stretched regions.

2. We analyzed diagrams of angular deformations and
shear stresses, defined functionals, obtained a new
hypothesis of angular deformations and corollaries
from the hypothesis.

3. The bending and torque moments were presented
using new functionals, the projection coefficients of
normal and tangential stresses were determined us-
ing diagrams of compressed concrete.

4. The areas of filling of the diagram ωε(x,y,z) (ωσ(x-
,y,z)) and ωγ(x,y,z) (ωτ(x,y,z)) were obtained from the
functionals of the bending and torque moments.

5. The analysis of the new functionality and functions
of Timoshenko-Goodyer has been carried out. The
error in finding the value of the functional considered
is 2% at the points considered and 7% at any points
of the cross section.

6. The total bending moments and torque are obtained
in simple expressions and in full form.
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