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The Organic Rankine Cycle (ORC) is a thermodynamic cycle that converts heat into mechanical energy to produce 
electrical power in a closed system using organic working fluids. It is also a heat recovery technology that can use 
heat at low temperatures and makes it a promising thermodynamic cycle with cost-effectiveness and more energy 
efficiency. However, the ORC system’s total efficiency is determined by the compatibility of the expander 
characteristics and working fluid properties with the system’s thermodynamic cycle parameters. This study aims to 
analyze using an integrative review method regarding the development of the ORC system as a heat recovery 
technology. The purpose of the integrative review method is to review the knowledge base, where the review is 
carried out critically and has the potential to conceptualize and expand the theoretical foundation developed. In this 
case, the first analysis is about the literature study on the parameters of the ORC system. Furthermore, the 
development and optimization of the ORC system are discussed further to analyze its capabilities in various 
applications. Work fluids, component optimizations, and system configurations have been reported for possible 
improvements. In addition, this ORC system can be used as a technology in developing various renewable energy 
sources, including solar, biomass, geothermal, and waste heat. Furthermore, this system is assessed for its 
environmental and economic benefits to developing its capabilities and potential. The results show that integrating 
the ORC system in various renewable energy sources can provide proper operation, better efficiency, and 
advantages such as increased power and reduced pollution. 

Keywords: ORC, renewable energy, heat recovery 

1 INTRODUCTION 

Energy is an important topic for several studies due to global warming and increased energy demand [1]. The 
tendency of fuels such as kerosene, liquefied petroleum gas (LPG), gasoline, coal, petroleum, and others derived 
from very limited fossil fuels to finish quickly also adds to the need to focus on this concept [2], [3]. Therefore, this 
is led to the utilization of renewable and sustainable energy sources potential to solve the problem [4]. 
Most renewable energy sources with low to moderate temperatures, such as solar, geothermal, biomass, and 
industrial waste heat, are difficult to convert efficiently into electricity using conventional power generation. 
Therefore, this encourages research on several thermodynamic cycles, such as the Rankine cycle, which was 
widely developed [5]. The Rankine cycle, which involves isentropic compression in the pump, addition of pressure 
heat in the boiler, isentropic expansion in the expander, and release of pressure heat in the condenser, is suitable 
and can be used in steam power plants. After condensing steam, the working fluid is fed back into the evaporator 
to maintain a continuous cycle [6], [7]. Meanwhile, due to the Steam Rankine Cycle (SRC) limitations, the Organic 
Rankine Cycle (ORC) system has been developed as a solution to the use of low heat sources. Also, it has a more 
flexible design in several possible system configurations [8]. It has also been stated that heat from a source can be 
utilized at low temperatures by combining the ORC with the SRC concept and an organic working fluid with a low 
boiling point [9]. 
The ORC system is a potential method for producing electrical power from low-temperature heat sources in 
renewable energy applications and improving industrial energy efficiency. [10]–[12]. It is also commonly utilized due 
to the ease of design and operation [13], [14]. However, the system has several disadvantages currently being 
investigated by researchers to improve its operations. In recent years, some of the factors designed to ensure 
improved performance have been categorized into three: the effect of cycle configuration, the choice of operating 
fluid, and the system’s operational working conditions [1]. 
Because of its simplicity and reliability, combined heat and power production (CHP) utilizing the ORC system is the 
most suitable and promising alternative [15]. The system can also be freely applied to several different resources, 
either as a stand-alone or a Combined Heat and Power Production (CHP). As a result of this article, the 
characteristics that affect the efficiency and performance of the ORC system in its application as a small-scale 
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energy generator are described in this study. It also presents optimization possibilities to achieve efficiencies from 
the system’s initial development. Furthermore, a comprehensive discussion of the integration of the ORC system in 
renewable and sustainable energy sources is discussed, with a focus on current conditions and future 
developments. In addition, an analysis of environmental and economic benefits is also explained as a consideration 
in the application of the ORC system. 

2 ORGANIC RANKINE CYCLE PARAMETERS AND OPTIMIZATION 

2.1 Parameters of Organic Rankine Cycle Performance 

Several factors influence the ORC system’s efficiency, including the choice of working fluids, the usage of 
expanders, the system’s adaptability, and working circumstances. [16], [17]. The effect is both technical and 
economical in the developmental stages. Meanwhile, Drozdz reported that the results obtained from technical and 
economic optimization are different [18]. The assumption based on economic criteria shows that the optimal 
exploitation point is ideal in cases with stable economic parameters and changes when the parameters are 
dynamic. It is shown in geothermal energy sources, where the optimal pumping intensity is affected by changes in 
the heat unit relationship and the value of electrical energy. 
Water is commonly utilized as the working fluid in SRCs that operate on a large scale with high-temperature energy 
sources. However, the thermodynamic nature of the steam produced requires a complicated generator scheme. At 
the same time, the creation of a liquid fluid during the expansion process also leads to several problems in the 
turbine. Therefore, water is an unsuitable working fluid for low-temperature energy sources [19]. 
Using organic working fluids with boiling points lower than water is promising to generate electrical energy in the 
ORC [20]. Moreover, the suitability of several components with the configuration of this system also provides an 
important role in producing optimal work from the ORC system. 
The isentropic working fluid pump and expanders are considered to have no change in temperature or entropy, 
while the evaporator and condenser are unaffected by the operations. As a result, the following is the energy 
conservation relationship for each component [7], [21], [22]: 
Working Fluid Mass Flow Rate (kg/s) 

ṁ =  ρ . v  (1) 

ṁ = Qevap
heca p out −hevap _in

̇   (2) 

Pump power (Watts), with q = 0 

wpump ,in =  ṁ . hpump _out −  hpump _in   (3) 

or, 

wpump ,in = ṁ . V(ppump _out  −  ppump _in ) (4) 

Heat Enter the Evaporator (Watt), with w = 0 

Qevap ,in = ṁ . (heva pout −  heva pin )  (5) 

Expander Power (Watts), with q = 0 

wturb ,out = ṁ . (htur bin −  htur bout )  (6) 

Heat Out on the Condenser (Watt), with w = 0 

Qcond ,out =  ṁ . (hcon dout −  hcon din )  (7) 

Energy Efficiency 

 ηen =  wnet
Qin

=  1 Qout
Qin

  (8) 

where, 

wnet =  qin −  qout =  wturb ,out −  wpump ,in  (9) 
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2.2 The Selection of Organic Working Fluid 

The selection of a safe and environmentally friendly working fluid with reliable thermodynamic characteristics and 
suitability at a specific temperature range is necessary to obtain an optimal work cycle and system configuration 
[16], [23]. Moreover, the temperature range for ORC operation also influences the selection process due to the 
fluid’s thermodynamic properties on cycle efficiency at different applied temperatures [24]. 
The critical temperature, critical pressure, and type of expansion of the fluid (dry or wet) are the most typical 
thermo-physical parameters used to determine the nature of the working fluid [25]. A high-molecular-complexity 
expander is utilized to lower the average temperature difference between fluids with the same critical temperature, 
while a heat exchanger is used to prevent exergy losses [26]. Meanwhile, a higher critical temperature also 
requires an expander with a low rotation speed to obtain a rate close to the optimal value [27]. 
Because of the vibrations of the atoms, a rise in molecular complexity usually increases the heat capacity of the 
molecules. As can be seen from the difference in the slope of the saturated vapor curve and the simple molecule in 
the T-S diagram in Figure 1, this has three main implications for the power cycle. As a result, in dry conditions, this 
results in an expansion. This phenomenon demonstrates how the preheating phase in evaporation and the 
desuperheating phase in heat loss are becoming increasingly important [19]. 

 

Fig. 31. The T–S diagram for wet, isentropic, and dry fluid [28], [29] 

The slope of the saturation vapor curve, as shown in Figure 1, is one approach to defining organic fluids. 
Furthermore, dry and isentropic fluids can outperform wet fluids [1]. To achieve superior thermal performance, the 
ORC system with low-temperature heat requires an organic fluid with a lower latent heat of evaporation [28]. 
Furthermore, low-specific-volume organic fluids reduce the heat exchanger and expander size and decrease total 
system size and cost. [30]. As a result, to improve cycle efficiency, the fluid must reach a critical temperature close 
to the heat source’s maximum temperature [31]. Meanwhile, a larger molecular weight can minimize the number of 
stages necessary for the expander, allowing for a more solid ORC design, increased mass flow and turbine 
performance, and lower costs [24], [32]. Because of their low critical temperature value, refrigerants are frequently 
used as the working fluid in waste heat recovery with low-temperature quality [33]. Most of the challenges in the 
design of turbines in ORC systems can be solved by using a different working fluid with a higher molecular mass 
and molecular complexity, lower critical pressure, and lower boiling point than water [19]. It can be seen in Table 1, 
which compares the three most common types of working fluids or about 80% of the most widely used in ORC 
systems [34]. 

Table 21. Properties of the three most commonly used working fluids in ORC systems [34] 

Fluid (type) 𝑻𝑻𝑵𝑵𝑵𝑵𝑵𝑵(K) 𝑻𝑻𝑪𝑪(K) 𝑵𝑵𝑪𝑪(MPa) ODP GWP Safety Groupa 

R134a (wet) 247.0 374.2 4.06 0 1430 A1 

R245fa (dry) 288.2 427.2 3.65 0 1030 B1 

R123 (dry) 300.9 456.8 3.66 0.02 77 B1 

2.3 The Selection of Expander Type 

While determining an expander for an ORC system, numerous criteria must be considered, including power 
capacity, isentropic efficiency, cost, and complexity. The parameters that can be applied to various types of 
expanders varied. An acceptable choice should be made based on the system’s operational and working 
conditions [28]. 
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It is possible to generally categorize expanders into the velocity types such as radial inflow and outflow, axial types, 
and volume types such as reciprocal piston, screw, and scroll expanders, as shown in Figure 2  [35], [36]. 

 

Fig. 2. Classification of Expanders for ORC Systems [37] 

Turbo expanders are commonly applied in ORC systems with output power greater than 50 kW and are 
advantageous due to their small size, lightweight, and high efficiency. Their design and production process, on the 
other hand, is challenging. As a result, they have higher costs because there is a possibility of a considerable 
reduction in efficiency if they do not fit the design. Due to the risk of blade destruction, expander turbines cannot 
work in two conditions [29]. 
Screw expanders are best suited to output power ranges of 20-50 kW, whereas other volumetric expanders are 
better suited to output power ranges of 1-10 kW [10], [36]. These volumetric expanders differ from speed type 
expanders in that they have a lower flow rate, a higher-pressure ratio, and a lower rotational speed. Their 
advantage is that they can operate with the working fluid in two-phase conditions, which can occur at the end of the 
ORC system’s expansion process [38]. 

2.3.1 Reciprocating Piston Expander 

It is the first type of volumetric expander developed [29]. It can produce high expansion efficiency and a volume 
ratio capable of reaching 10 or slightly higher [39]. The expander, however, requires a lot of bearings and intake 
and exit valves in its application, which makes the design complicated and expensive. Moreover, the liquid fluid in 
the expander cylinder can damage the component. Therefore, this expander is not recommended in the wet type of 
expansion [40]. 

2.3.2 Vane Expander 

This type has a low rotational speed and volume ratio of less than 5. Its vane angle usually comes into contact with 
the expander casing, which means lubrication is needed to avoid damage to the working fluid. Moreover, it is 
important to consider its high friction wear and tear. This vane expander is very popular and widely used in 
industries, and its efficiency is reported to be from 30 to 40% [40]. Badr et al. reported that the vane expander’s 
efficiency reaches 80% in certain conditions [41]. 

2.3.3 Screw Expander 

The screw expander does not require any valves but needs at least four bearings for two rotors that are not in 
contact. It means lubrication is required to guarantee a closed system in this expander [29] and is observed to have 
the highest lubrication requirement out of the volumetric types of the expander. It, however, needs to be operating 
at a high rotation (>10,000 rpm) when not lubricated to minimize losses. Therefore, it is considered inappropriate to 
be applied in standard generators. The volume ratio is also in the range of 5, with an efficiency of approximately 
50% [39]. Meanwhile, it is possible to properly handle the humidity or liquid phase created in this expander [28], 
[40]. 

2.3.4 Scroll Expander 

A scroll expander is a primary mechanism consisting of two spirals that serve as a fixed and orbiting scroll. It can 
be installed directly on the generator shaft to prevent additional bearings. Furthermore, the volume ratio spans from 
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1 to 5 [39], [42]. Even for relatively small systems (1 kW), Wang et al. and Zhou et al. showed measured efficiency 
of up to 83% [43], [44]. The liquid phase is not a problem for this scroll expander [40]. Due to its solid structure, 
reliability, fewer moving parts, lower noise and vibration, it has lately emerged as a possibility for energy generation 
in micro and small-scale ORC systems [45], [46]. 
Because of these characteristics, scroll-expanders are preferred in this ORC system. Furthermore, the applicability 
of these properties, the nature of the working fluid, and the thermodynamic cycle parameters all affect the system’s 
overall mechanical or energy efficiency [17]. Trans critical ORC systems with scroll expanders have been 
discovered by Landelle et al. to have the ability to obtain a maximum expander efficiency of up to 66.5% with a 
gross power production of 6 kW under supercritical entry conditions [47]. 
2.4 The Organic Rankine Cycle (ORC) System Configuration 

The ORC system’s performance is highly influenced by its configuration and installation model. Choosing the 
wrong design can limit the system’s thermal efficiency and prevent it from utilizing heat to its full potential [48]. 
Based ORC, regenerative ORC (RORC), and RORC with Internal Heat Exchanger (IHE) are some of the possible 
configurations in this study, as illustrated in Figure 3 [22], [48]. 
In the ORC, efficiency can be improved by regenerating or feeding liquid heaters or operating above the critical 
point in the transcritical or supercritical cycle [49]. A SORC with a regenerator is known as the Regenerative 
Organic Rankine Cycle (RORC). This setup allows some heat to be recovered from the expander exit, reducing the 
requirement for a condenser. On the other hand, it may be detrimental in recovering as much heat as feasible in 
the regenerator [50]. 
The three types of configuration presented in Figure 3 show the addition of Open Feed Organic Heater (OFOH) 
and IHE in the RORC configuration with IHE can increase the factors affecting the performance by improving the 
efficiency and reducing energy loss from the cycle [48], [49], [51]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Configuration of (a) Based ORC, (b) RORC, and 
(c) RORC with IHE [48] 
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3 ORGANIC RANKINE CYCLE PARAMETERS AND OPTIMIZATION 

At low temperatures, the ORC characteristics produce highly efficient power. It requires a simple system 
configuration, and efficient expanders are very suited for most renewable energy sources, such as solar, biomass, 
and geothermal, or to increase industrial energy efficiency [12], [19], [52]. Figure 4 shows the application range of 
ORC systems based on temperature and power output which is recommended to ensure better conditions for work 
and efficiency. 

 

Fig. 4. An overview of ORC uses in the temperature-power output plane of heat sources [19] 

The heat source providing the energy required by the ORC system also has different characteristics which 
significantly influence theoretical analysis and system design [53]. The ORC system overview concerning its 
technical utilization aspects, transformation, or energy exploitation process is presented in Figure 5 by following a 
possible configuration [54]. 

 

Fig. 5. An overview of ORC’s potential applications by energy source [54] 

3.1 Solar Energy 

Solar energy-based technology has recently attracted interest in fulfilling the different energy needs of humankind 
[55]. Concentrated Solar Power (CSP) is a technique that employs a mirror or lens to focus sunlight on heating fluid 
and producing steam, which is then utilized to drive turbines and generate power in the same way as conventional 
power plants work [3]. 
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Fig. 6. ORC System Schematic Diagram with Solar Thermal Energy [37] 

Figure 6 shows a block diagram of the SORC prototype, with the evaporator being a solar parabolic collector 
system that directly vaporizes the working fluid. To improve the present heating system, the hot steam is held in 
Thermal Energy Storage (TES) [15]. Furthermore, high pressure and temperature steam are directed towards the 
expander to generate electricity, and the low-pressure steam is cooled in the condenser after departing the 
expanders [37]. 
The heat energy from the sun is used in the Solar Rankine Cycle to heat the working fluid directly using direct 
vapor generation (DVG) and indirectly utilizing the heat transfer fluid (HTF) through a collector that works as an 
evaporator [56]. This application shows the configuration of solar energy with an ORCe using a solar thermal 
collector is very attractive for large capacity plants [55]. Concentrated solar collectors are commonly used for large-
power capacity systems because of their high efficiency in the medium to the high-temperature range. Meanwhile, 
the type of collector used may impact the energy produced’s efficiency [56], [57]. 
3.2 Biomass 

Biomass is one of the most important energy sources, accounting for about 10% of global energy consumption. It 
comes from various industrial and agricultural operations, such as manufacturing and agricultural and forest wastes 
[13], [49]. Rice husks, sawdust, rice straw, and other biomass wastes are used as an alternative to fossil fuels in 
several underdeveloped nations [2]. The thermo-chemical and bio-chemical or biological technologies are the two 
basic procedures for converting these resources to energy [15], [58]. 
Biomass offers a lot of potential for simultaneously producing combined heat and power (CHP) [13]. It can also be 
used to create power in both external and internal combustion systems. The biomass is burned in a boiler for 
external combustion. The heat is directed into the ORC, but it must first be transformed into gas through pyrolysis 
or liquid biofuel in a conventional internal combustion engine. External combustion has the main disadvantage of 
lower conversion efficiency, whereas internal combustion has the problem of gas purification [53]. 

 

Fig. 7. The working principle of the biomass-fueled ORC process [59] 
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Figure 7 represents the biomass configuration with the ORC system, and the process includes using a hot oil cycle 
to connect the ORC system to a thermal oil boiler. This ORC system also operates in a closed cycle using silicon 
oil as the organic pressurized fluid, evaporated, heated by thermal oil in the evaporator, and transmitted in an axial 
turbine directly connected to an asynchronous generator. Furthermore, before entering the condenser, the silicone 
oil passes through a regenerator, and the condensation happens at a temperature that allows heat to be collected 
and utilized as district heat. Later in the cycle, the working fluid passes through the pump to return to the suitable 
pressure level [59]. Using medium heating media or thermal oil, on the other hand, has various advantages, 
including low evaporator pressure, insensitivity to load fluctuations, simple, and safe operation [60]. 
3.3 Geothermal 

There are two types of geothermal energy sources. The first is hydrothermal reservoirs containing hot water or 
steam, immediately injected into the ORC system [61]. The second is Enhanced Geothermal Systems (EGS), 
which employ cold water pumped into wells drilled through shale to create hot water or steam at temperatures 
below 650°C [53]. Construction of new geothermal power plants in new fields and enhancing the thermal efficiency 
of existing power plants are two approaches to developing geothermal power plants [62], [63]. It is possible to apply 
the ORC technology for geothermal resources to a binary power plant system. Ormat first tested this in the early 
1980s, which succeeded in developing this method as a solution for the commercial utilization of geothermal 
resources at low to medium temperatures. The binary power plant system, on the other hand, is currently much 
more similar to the ORC [25]. 
By employing waste brine from a separator, this binary geothermal power plant system can be applied to a flash 
system geothermal power plant [64]. The combination of this system can combine the two system advantages, 
which allows it to create an ideal cycle. This combined flash-binary geothermal power plant uses at least two 
turbines, making it possible to produce more power even with the same power source [7]. The configuration of the 
two systems is shown in Figure 8. 

  

(a) (b) 

Fig. 8. (a) Combined Flash-Binary Power Plant and (b) Binary Geothermal Power Plant [16] 

However, while implementing ORC technology in a binary geothermal power plant, various factors must be 
considered, including the working fluid, condensation temperature and pressure, cooling media, expander 
technology, and cycle type [25]. Meanwhile, the integrated system performance of the supercritical ORC cycle-
based hybrid system is the best, followed by subcritical ORC, single flash, dual flash, and Kalina cycle [65]. 
3.4 Waste Heat Recovery System (WHRS) 

The development of waste heat and the lack of appropriate equipment for cost-effective usage of low-level heat are 
the fundamental energy inefficiencies in an industrial system [5]. The Waste Heat Recovery System (WHRS) is a 
cost-effective, ecologically acceptable technology for saving energy in an industry by repurposing waste heat even 
at low temperatures [66]. It is also proven to increase energy effectiveness and provide considerable economic 
benefits such as reducing fuel consumption and even CO2 production in an integrated energy generating unit with 
WHRS [1], [67]. It is due to the prospect of providing a profitable energy source while also lowering overall energy 
usage through numerous WHRS technologies to recover waste heat [68], [69]. 
However, it is important to note that each waste heat temperature range has a specific WHRS technology to obtain 
the most optimal efficiency [68]. It is also possible to use heat sources directly for energy generation needs in direct 
usage and heat exchangers [70]. Furthermore, the thermodynamic cycle can be used directly to recover heat from 
waste to generate electrical energy or improve a process’s energy efficiency [71]. Through a comparative 
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thermodynamic analysis of ORC and Kalina Cycle, Nemati et al. also stated that using thermodynamic cycles with 
organic working fluids offers cost-effectiveness and energy recovery approaches that are more promising for 
intermediate-level waste heat sources [23]. Furthermore, the ORC system is a thermodynamic cycle and WHRS 
technology that may use waste heat in power plants employing a variety of energy sources, including geothermal, 
biomass, and solar, at low temperatures (less than 100°C) [68]. The system’s main advantage is converting energy 
that would otherwise be wasted into reusable energy. Therefore, it significantly reduces thermal pollution and fossil 
fuel consumption [37]. 

 

Fig. 9. WHR Working Principles [72] 

Figure 9 is an example of the application of the WHRS principle to a MAN B&W low-speed diesel engine with the 
exhaust gas observed to be flowing pass the main turbocharger engine through the exhaust gas bypass. 
Therefore, this reduces the total incoming air and exhaust gas and subsequently increases the exhaust gas 
temperature. This further causes an increment in steam production in the boiler, which is later used in turbines to 
produce electrical energy. As part of the WHRS, a pressure decrease at the exhaust gas bypass can also be 
exploited to generate power using a secondary turbine [72]. 

4 ENVIRONMENTAL AND ECONOMIC BENEFITS OF ORC 

The use of the ORC system needs to consider various aspects other than its work performance. Some of the 
elements that need to be considered in using this ORC system include environmental and economic issues. In this 
case, the impact of the ORC working fluid on the environment is very important. Some things that need to be 
considered are fluids with high Ozone Depletion Potential (ODP). In addition, organic fluorinated liquids (HFCs) 
should be avoided as they have a high Global Warming Potential (GWP) [6]. GWP is not only necessary for 
environmental concerns but also cycle efficiency. It can be seen that the working fluid with a GWP lower than 1500 
can absorb more energy from the heat source to increase the cycle efficiency [13], [73]. 
Compared to water or steam cycles, ORC systems provide limited performance due to low to moderate operating 
temperature levels. However, the ORC system can convert low-grade heat input into energy at an acceptable 
conversion ratio [74]. In this case, the configuration of the ORC system can also play an important role in the 
resulting environmental impact [75]. As with the use of a recuperator which can reduce the average heat transfer 
temperature to the environment, it is lower and results in higher cycle thermal efficiency and reduces the resulting 
thermal pollution to the environment [13]. 
Organic fluids are expensive, so it is important to find a suitable trade-off between cost and performance. In 
general, the fluids used in the operation of the ORC system are fluids that have been widely used in other fields. It 
aims to obtain organic fluids at lower prices [10], [76]. Expanders have an important role in generating system 
performance. In this regard, investigations using volumetric expanders have been carried out to provide good 
performance at lower costs. Cost reductions for high-speed power generators with a working fluid that does not 
require excessively high turbine rotational speeds can increase the cost-effective capabilities of small-scale ORC 
units [10]. 
Under favorable evaporating pressure and condensing temperature conditions for a wide range of ORC 
applications, the specific cost per kilowatt-hour decreases as thermal efficiency increases. In addition, lower 
condensing temperatures or higher evaporating pressures can also lower the specific cost per kilowatt-hour. On the 
other hand, with a constant condensing temperature and vaporization pressure, a working fluid with a higher critical 
temperature can achieve a lower specific cost [51], [74], [77]. 
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5 CONCLUSION 

The ORC system is a promising technology for generating energy by utilizing heat sources at low temperatures. 
However, the cycle configuration, working fluid selection, and operational working conditions in the system all 
impact its performance. Because of its simplicity and reliability when linked with other production systems, 
Combined Heat and Power Production (CHP) based on a small-scale ORC system were one of the best and most 
promising alternatives. Meanwhile, while choosing an expander for the system, numerous criteria must be 
addressed, including power capacity, isentropic efficiency, cost, and complexity. However, Scroll-expanders were 
preferred because of their excellent efficiency, low noise and vibration levels, and great reliability. With the 
inclusion of OFOH and IHE in the RORC configuration, the configuration was also an important factor affecting 
system performance, with IHE enhancing performance and reducing the cycle’s energy loss. Furthermore, the 
ORC system’s properties make it ideal for most renewable energy sources, including geothermal, solar, and 
biomass, and it offers the industry increased energy efficiency by utilizing waste heat. The findings revealed that 
integrating the ORC system with various energy sources provides proper operation, improved efficiency, and 
multiple benefits such as increased power and reduced pollution by limiting wasted heat. 
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