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In this work, an application of artificial intelligence in the oils & gas industry is developed to iden-tify flow patterns in 
horizontal and vertical pipes of two-phase flow of oil and water, normalizing the word information and converting it to 
numerical values through the development of an artifi-cial neural network, whose input layer is composed of the 
surface velocities of each fluid, the ve-locity of the mixture, the volumetric fraction of the substances, diameter and 
the inclination of pipelines and the oil viscosity. The Artificial Neural Networks (ANN) has two hidden layers composed 
of 45 neurons. The database with which the model was trained, validated, and tested has 6993 rows of information 
corresponding to the inputs of the intelligent system and particular-ized for annular flow in horizontal pipes and DO/W 
in vertical pipelines. Notice that the infor-mation was obtained after re-engineering the information presented by 12 
and 18 authors for hor-izontal and vertical piping, respectively. Finally, the mean square error obtained by the model 
was around 1.38%, with a maximum coefficient of determination of 0.79. 

Keywords: artificial neural network, flow pattern, two-phase flow, machine learning 

1 INTRODUCTION   
In the petrochemical, food, chemical, and other industrial processes, two-phase flows are often present as liquid-
liquid (oil-water) or gas-liquid (gas-water or gas-oil) mixtures. One of the industry's main goals is to improve the 
efficiency of the processes. Hence it is necessary to investigate the hydrodynamics of those flows further. This article 
analyzes the use of artificial intelligence-based on artificial neural networks (ANN). This study is a case where few 
data obtained in the laboratory are used to train and test the ANN. An artificial neural network can be trained with 
only some, but reliable data duly validated by other measurement instruments to provide a solution to predict 
important parameters of processes in which liquid-liquid flow occurs. Operating parameters that require great 
attention include in situ volumetric fraction related to pressure drop, heat and mass transfer, corrosion, and others. 
Techniques based on electrical impedance are one of the options to monitor and control industrial processes[1]. 
However, the information delivered by the systems quite often requires experience from the operator. For this reason, 
the automatic system based on artificial intelligence that efficiently retrieves critical information is one of the most 
useful options. 
In the literature, different investigations use artificial intelligence to study two-phase flows of water and air in a vertical 
duct as those developed by [2] and [3]. These authors used the input signal from the sensor based on electrical 
impedance to train the neural network to identify the flow pattern. They concluded that it is possible to identify the 
global and local flow regime using the probability distribution and measured based on electrical conductivity, whose 
information was used to train the artificial neural network [4]. In order to have better accuracy and identify the flow 
patterns, this system was analyzed with intelligent algorithms based on Support Vector Machine (SVM) and wavelet 
transform, efficiently using the electrical characteristics obtained by Electrical Resistance Tomography (ERT) 
sensor[5]. [6], identified the flow regime through neural networks, having as inputs for the intelligent system the 
Probability Density Functions (PDF) of the electrical-impedance time signal. Flow patterns have been characterized 
using the topographic information obtained by a capacitive sensor; the images obtained were used as characteristics 
for an intelligent system based on fuzzy logic [7]. [8] the pressure-time signal of a flow to train an intelligent system 
based on the Elastic Maps Algorithm (EMA) technique for identifying the flow pattern. Other authors, as [9], combined 
the artificial intelligence methods of [8] with Principal Component Analysis (PCA) to obtain the flow rate based on an 
electrical signal related to the flow pressure signature. Three artificial intelligence algorithms based on Artificial Neural 
Networks (ANN), genetic programming (GP), and Support Vector Machine (SVM) were compared to obtain the 
volumetric fraction and flow rate [10]. Recently, an innovative technique, based on a hybrid machine learning system 
combined techniques such as neural networks and random forest to obtain the liquid-gas flow pattern [11], where 
phenomenological expressions were used to improve the prediction capabilities of the data-driven approaches. 
In a study of water-air two-phase flow in a horizontal pipe to determine the flow pattern using artificial intelligence 
[12], the band spectrum from hydrophones was used as a neural network input. Artificial intelligence based on neural 
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networks was applied by [11], where the time signal of the flow pressure was used to train the network and determine 
the flow pattern. Based on Electrical Capacitance Tomography (ECT) signal, [12] trained the back-propagation neural 
network to determine flow patterns in a horizontal pipe. [13] determined the flow patterns employing six artificial 
intelligence methods, using the time signal of a gamma-ray sensor as input to train the intelligent models. The above 
researchers concluded that five methods presented good results, with the exemption of the algorithm based on Single 
Decision Tree (STD). Using artificial intelligence systems based on fuzzy logic techniques and data of void fraction 
obtained by a Wire-Mesh Sensor (WMS), [14] identified several flow patterns. [14] used Support Vector Machine 
(SVM) to identify the oil-air flow patterns. They used the data obtained from an ECT for training. The input parameters 
for a neural network used by were applied with an ultrasound source, used for training and flow pattern recognition. 
Oil-water two-phase flow studies in vertical pipes using computational intelligence were previously reported by [15] 
and [16]. [15] used the characteristics obtained from an ultrasound source and sensor-based on electrical 
capacitance as inputs for the training of a neural network to determine the volumetric water fraction. In contrast, [16] 
used the fluids' superficial velocities to calculate the volumetric water fraction for the network's training. An oil-water 
flow in a horizontal pipe was studied by [17],[18], who analyzed the different flow patterns through neural networks. 
The data used in that work were the photographs acquired by an optical probe, the same technique used by[19],[20]. 
TABLE I summarizes the main studies used in the different studies. This table extracts the main characteristics of 
the experimental and analytical data of each author, classified according to each artificial intelligence Technique 
used. 
Some works dedicated to recognizing flow-patterns in solid-gas two-phase flow were also found, as [21], who 
implemented a neural network with back-propagation architecture using time signals of an electrostatic sensor. There 
are also some investigations developed in water-oil-air three-phase flow using artificial intelligence techniques to 
identify flow patterns, such as [22], [23], [24], [25]. Works have also been done identifying flow structure and flow 
regime transitions in two-phase air, and water flows [11] and predicting physical parameters in two-phase oil and 
water flows [26]. 
Currently, great technological advances are being presented due to the submergence of industry 4.0 and the 
industrial internet of things IioT [27], [28], [29]. One of the great pillars of this industrial revolution is machine learning, 
with its different techniques to solve, analyze and model problems in industrial processes. Motivated by these 
advances, in this paper he presents a methodology based on artificial intelligence to identify flow patterns, in the oil 
water process, as a fundamental pillar of industry 4.0. The main objective of this study is to use the data of surface 
velocities, volumetric fractions, pipe diameters, and inclinations, and viscosities as input parameters for the 
structuring, training, validation, and testing of a neural network capable of predicting characteristic flow patterns in 
vertical and horizontal pipes with the two-phase flow of oil and water that currently according to the literature found 
have been described mathematically without using intelligent models. 
For the identification of multiphase flow patterns, we work with conventional or experimental methods based on 
mathematical modeling, which is sometimes difficult to understand and process, by computer systems or by technical 
personnel in charge of data analysis. The present work brings the novelty of incorporating artificial intelligence to the 
study of multiphase flows, contributing to its great identification capacity, when selecting hydrodynamic 
characteristics of the fluids present in the oil and gas industry. 

Table 1. main studies found in the literature applied to multiphase fluids using artificial intelligence 

Reference Pipe 
Two 

phase 
flow 

Artificial 
Technique 

Measured 
characteristic 

Instrument 
technique Indicator 

[2] Vertical Air-
water ANN Void fraction, void 

fluctuations 
Impedance void 

meter 

Bubbly, Slug, 
Churn and Annular 

flow. 

[3] Vertical Air-
water ANN Void fluctuations Impedance void-

meter 

Bubbly, Slug, 
Churn and Annular 

flow. 

[4] Vertical Air-
water ANN Voltage void 

fraction. 
Conductivity 

probes 

Bubbly, Slug, 
Churn- Annular 

flow. 

[5] Vertical Air-
water 

Wavelet 
transform 

(SVM) 

Voltage signal in 
time ERT Bubbly, Slug and 

Annular flow 

[6] Vertical Air-
water 

ANN, 
expert 

systems 

Void fraction 
Impedance sensor 

Electrical 
resistivity probe 

Bubbly, Slug 
Churn, semi 
annular and 
Annular flow. 

http://www.engineeringscience.rs/


Journal of Applied Engineering Science 

Vol. 21, No. 1, 2023 
www.engineeringscience.rs 

 

 
publishing 

 
July Andrea Gomez Camperos et al. - Specialist 
system in flow pattern identification using artificial 
neural networks 

 

287 

Reference Pipe 
Two 

phase 
flow 

Artificial 
Technique 

Measured 
characteristic 

Instrument 
technique Indicator 

[7] Vertical Air-
water Fuzzy logic Tomography 

imaging using 3D 

Electrical 
capacitance 
tomography 

Bubbly, Bubbly–
slug, Slug, Slug–

churn, Churn, 
Churn–annular 

and Annular flow. 

[8] Vertical Air-
water 

Elastic 
maps 

algorithm 
PDF Differential 

pressure 

Bubbly, Slug, 
Churn, and 
annular flow 

[9] Vertical Air-
water PCA, ANN PDF and PSD 

Signal in time of 
differential 
pressure 

Bubbly, Slug, 
Churn, and 

annular flow. 

[10] Vertical and 
horizontal 

Air-
water 

ANN, SVM, 
GP 

Coriolis flowmeter, 
DP transducer Signal Coriolis 

Liquid mass flow 
rate, Gas 

volumetric fraction 

[12] Horizontal Air-
water ANN Band Spectra Hydrophone 

Bubbly, Slug, 
Churn and Annular 

flow. 

[27] Horizontal Air-
water ANN Absolute pressure 

signals 

Differential 
pressure 

transducer 

Bubbly, slug, and 
wavy stratified 

flow. 

[30] Horizontal Air-
water ANN 

Signal electrical 
capacitance and 

image tomography 

Capacitance 
tomography 

sensor 

Stratified, Annular, 
core and bubble 

flow. 

[13] Horizontal Air-
water SDT, ANN Absorption Signal 

time. Gamma ray 
Slug, plug, bubble, 

Transitional and 
plug – bubble flow. 

[31] Horizontal Air-
water 

Fuzzy logic 
c-means Void fraction PDF. Wire-mesh 

sensor 

Annular, Bubbly, 
Stratified, annular, 

Bubbly flow. 

[14] Horizontal Oil-air SVM Electrical 
capacitance ECT 

Stratified flow, 
annular and core 

flow. 

[36] Vertical Oil-air ANN Acoustic 
attenuation 

Ultrasonic 
attenuation 

Dispersed 
bubbles, 

Intermittent, 
Churn, Annular, 
gas volumetric 
fraction (GVF) 

[15] Vertical Water-
oil ANN 

Acoustic 
measurements 

impedance 

Electrical 
impedance 

measurements 
Water-cut 

[16] Vertical and 
inclined 

Water-
oil ANN Literature Literature Water holdup 

[17] Horizontal Water-
oil ANN 

Photographic and 
optical probe 
techniques 

[34], [19], [20] 

Stratified smooth, 
stratified wavy, 
Plug, Inverted 

dispersed 

2  MATERIALS AND METHODS 
This research was developed considering a re-engineering process and the information presented by several authors 
in the open literature in their works with a two-phase flow of lubricating oil (o) and water (w), obtaining a database 
with a total of 6993 points, which includes surface velocities (𝑗𝑗𝑜𝑜, 𝑗𝑗𝑤𝑤 , 𝑗𝑗𝑜𝑜+𝑤𝑤), volumetric fractions (ɛ𝑜𝑜, ɛ𝑤𝑤), pipe diameters 
(D) and inclinations (𝜃𝜃), viscosities (µ), and flow patterns. 
The numerical ranges studied in this work are presented in Table 2. 
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Table 2. Numerical ranges of the parameters used 

Parameters 
Range 

Low value High value 

jo [m/s] 0.00035 4.48 

Jw [m/s] 0.00035 4.17 

Jo + jw [m/s] 0.0069 5.94 

ɛw [-] 0 1 

ɛo [-] 0 1 

D [m] 0.0056 0.127 

µo [Pa. s] 0.001 5.6 
θ [°] 0 90 

The literature database for horizontal pipes with the two-phase flow was structured from a re-engineering process of 
the information presented by 12 authors, reaching around 2129 experimental points, summarized in Table 3, which 
correspond to rows of information with diameters, viscosities, surface velocities, and volumetric fractions. In this 
database, eight characteristic flow patterns were identified as follows: ST, ST & MI, D o/w & w, D o/w & D w/o, D o/w, 
D w/o, I, and A. 

Table 3. Horizontal pipeline summary database 
Reference D [m] µ_o [Pa.s] No. of data 

[35] 0.021 0.799 138 

[36] 0.1064 0.00188 49 

[37] 0.1 0.002 99 

[38] 

0.0508 0.0288 106 

0.0508 0.013 30 

0.0508 0.013 88 

[39] 0.026 5.6 69 

[40] 
0.019 0.012 196 

0.0254 0.012 268 

[41] 0.025 0.107 536 

[42] 0.032 0.0054 57 

[43] 0.059 0.022 76 

[44] 0.0828 0.00717 43 

[45] 0.026 5 64 

[46] 
0.0056 0.0052 213 

0.007 0.0052 97 

Analogously, for the vertical pipe with the biphasic flow of oil and water, a re-engineering process was developed for 
the information presented by 18 authors. First, a database was structured to store 4864 rows of information with 
diameters, viscosities, surface velocities, and volumetric oil and water fractions. In the database developed, 10 flow 
patterns were identified: S o/w, S w/o, TF, VFD o/w, VFD w/o, D o/w, D w/o, churn o/w, churn w/o, and core flow. 
Table 4 summarizes the information contained in the database obtained from the standpipe literature. 

Table 4. Vertical pipeline summary database 

Reference D [m] µ_o [Pa.s] No. of data 

[47] 0.0284 0.488 392 

[36] 0.1064 0.00188 49 
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Reference D [m] µ_o [Pa.s] No. of data 

[48] 0.02 0.011 101 

[49] 0.05 0.02 126 

[50] 0.04 0.035 92 

[51] 0.0263 0.0201 15 

[52] 0.02 0.125 175 

[53] 0.127 0.001 9 

[54] 0.027 0.02 109 

[55] 0.0254 0.001 55 

[56] 0.0254 0.001 32 

[57] 0.01 0.287 1421 

[58] 0.026 0.0011 90 

[59] 0.03 0.03 252 

[60] 0.0284 0.5 92 

[61] 0.03 0.044 98 

[62] 0.02 0.09732 1699 

[63] 0.04 0.0041 57 

From the information collected, complementary treatments were carried out on the unified database to structure a 
predictive model capable of identifying the flow patterns present in horizontal and vertical pipes by applying concepts 
related to ANN. Additionally, the Reynolds number was calculated to determine the type of flow, obtaining values 
between 0.12 and 275714.9 (i.e., laminar, and turbulent flows, defined from the surface velocities of the mixture, the 
diameter of the pipe, together with the viscosity and viscosity of the mixture). 

2.1  ANN develops 
The artificial intelligence technique used to structure the predictive model was artificial neural networks; this 
implementation was carried out in MATLAB software. The development of the neural network includes a fractionation 
of the total database (6993 items), where 70% of it is used in the training of the model (4892 items), another 15% of 
the information is used in the validation (2098 items), and the remaining 15% is used in the testing of the developed 
model. 
The parameters defined in the input vector of the neural network were the surface velocities of each fluid, the velocity 
of the mixture, the volumetric fraction of the substances, the diameter and the inclination of pipelines, and the oil 
viscosity. The variable defined in the output layer was the flow pattern, as shown in Fig. 1. 
The hyperparameters set in each structuring developed were the learning rate, the number of iterations (1000), the 
number of hidden layers (2), the number of neurons in each hidden layer, and the Tangent sigmoid activation function, 
following the convergence theory defined by [63] for the universal approximation theorem for neural models.  
The parameters defined for each layer were the updated synaptic weights at each epoch and the biases. The training 
function used was identified by Levenberg-Marquardt with the addition of back-propagation to optimize the gradient 
descent and the loss function. Finally, the performance of each model developed was defined by the mean squared 
error (MSE). The computer system used to develop the neural network models was a laptop with an 8th generation 
core i5+ processor, 32 GBytes of RAM and a 1 Tb solid state disk. 
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Fig. 1. General structure of the artificial neural network developed. 

2.2 Normalization 
The output vector is composed of the flow patterns for horizontal and vertical pipes, which are symbolically defined 
from strings, named in different ways in the au-thors nomenclature, and unified by us. 
Considering the restriction generated in the structuring of neural networks in MATLAB related to strings, it is 
necessary to normalize the information in the output vector to convert it to numerical values and fully develop each 
model with numerical values. This conversion was developed considering a normalization process to the output 
vector, defining a normalization interval between zero and one ([0-1]), considering a scaling developed alphabetically. 
Each flow pattern defined corresponds to a single value within that interval shown in Table 5. Notice that the 
normalization was implemented in Python software. 

Table 5. normalization of nomenclature used 
Normalized 

values Flow pattern Symbol  Number of 
data 

0 Annular A  247 
0.067 Oil-in-water churn CHURN O/W  21 
0.133 Water in oil churn CHURN W/O  126 

0.2 Core flow COREFLOW  480 
0.267 Oil-in-water dispersion D O/W  1305 
0.333 Oil-in-water in water dispersion D O/W & W  10 

0.4 Water-in-oil dispersion D W/O  1616 

0.467 Water-in-oil and Oil-in-water 
dispersion 

D W/O & D 
O/W 

 20 

0.533 Intermittent I  304 
0.6 Oil-in-water slug S O/W  459 

0.667 Water-in-oil slug S W/O  656 
0.733 Stratified ST  515 

0.8 Stratified with mixing at the interface ST & MI  351 
0.867 Transition flow TF  314 
0.937 Oil-in-water very find dispersion VFD O/W  365 

1 Water-in-oil very find dispersion VFD W/O  204 
Figure 2 shows two flow maps, one for horizontal pipe (a) and one for inclined pipe (b), considering the Cartesian 
axes, the oil and water velocities. At the same time, representative images of each flow pattern are presented, which 
visually identifies the specific behavior inside the pipes, and therefore, the identification of the characteristic flow 
patterns for two-phase flows is generated. 
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(a) 
 

 
(b) 

Fig. 2. (a) Two-phase flow pattern map for horizontal pipes. Modified of [65]; (b) Two-phase flow pattern map for 
inclined and vertical pipes with representative images. Modified of [38] 

2.3 Inverted results 
The normalization inversion process was carried out in Python software, structuring a column vector with the results 
of each neural network model developed to generate an equivalence between the initial symbolic vector 
corresponding to the original flow patterns with the flow patterns generated by each system. Furthermore, a database 
is structured in which the information is stored to be analyzed, considering mathematical parameters that determine 
the highest level of similarity between the real and the predicted. 

2.4 Statistical parameters 
The best predictive model structure was selected with artificial neural networks, and two statistical parameters were 
defined to compare the real values with the experimental ones. These statistical parameters are the mean square 
error (MSE) and the coefficient of determination R2 because we are working with linear models. 
The mathematical assignment for the two statistical parameters is detailed in Equations 1 and 2. 
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𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�
𝑛𝑛

𝑚𝑚=1

�𝑌𝑌(𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚) − 𝑌𝑌(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚)�
2 (1) 

𝑅𝑅2 = 1 −  
∑𝑛𝑛
𝑚𝑚=1 �𝑌𝑌(𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚) − 𝑌𝑌(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚)�

2

∑𝑛𝑛
𝑚𝑚=1 �𝑌𝑌(𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚) − 𝑌𝑌(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚)�

2 (2) 

where 𝑌𝑌(𝐸𝐸𝐸𝐸𝐸𝐸,𝑚𝑚), equivalent to the value of each class obtained from the literature, 𝑌𝑌(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), corresponding to each value 
generated by the predictive model and 𝑌𝑌(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚) as the mean of all the values obtained by the ANN. 

3 RESULTS AND DISCUSSION 
Sixteen neural network structures were developed with an input vector composed of 8 parameters defined in Table 
5, two hidden layers with the same number of neurons in each of them, following a constant increase of 5 neurons 
in each new structure. The only output layer is composed of the results of the predictive models corresponding to the 
flow patterns for the horizontal and vertical pipe. 
Table 6 presents the results obtained for the statistical parameters defined in the methodology, obtaining results for 
the mean square error between 1% and 2%. The coefficient of determination of the linear models presents values 
between 68% and 78%, which allowed the selection of the best artificial neural network model, which was structured 
with fifteen (15) neurons in each occultic layer, using the sigmoid tangent activation function (TanSig) and the 
Levenberg - Marquardt training function and the application of back-propagation. 

Table 6. Results obtained for each ann structuring developed 

Configuration Activation 
function Neurons R² MSE MSE (%) 

1 

TanSig 

15-15 0.68 0.021 2.13 

2 20-20 0.74 0.017 1.73 

3 25-25 0.75 0.016 1.61 

4 30-30 0.72 0.019 1.86 

5 35-35 0.74 0.026 2.57 

6 40-40 0.75 0.016 1.63 

7 45-45 0.79 0.014 1.38 

8 50-50 0.74 0.017 1.68 

9 55-55 0.74 0.017 1.70 

10 60-60 0.71 0.019 1.90 

11 65-65 0.71 0.019 1.88 

12 70-70 0.76 0.016 1.57 

The comparison between the values obtained for the R² of each model allows select the best structuring (7), since 
an overall maximum of 0.79 was reached, followed by 0.761, 0.76 and 0.754 as shown in Fig. 3.  

 
Fig. 3. Coefficient of determination obtained for each structured intelligent model and its respective value 
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The MSE allowed selecting its best result in structuring with 45 neurons in each hidden layer, reaching the global 
minimum at 1.38%, followed by the local minimums of 1.57, 1.61, and 1.68, as is shown in Fig. 4. 

 
Fig. 4. Mean square error obtained for each structured intelligent model and its respective value 

Additionally, the statistical results mentioned in equations (1) and (2) are complemented with an error histogram, 
presented in Fig. 5, where the values of the error obtained in each one of the intelligent model development stages 
(training, validation and testing) are shown, featuring a centered normal distribution, indicating the quality of the 
developed process. A central tendency is identified with error values close to the ideal, which is zero, concentrated 
in the range of values between -0.1 and 0.1, given that 98.6% of the information, corresponding to 6896 data, are 
found with an error of less than 0.3, identified by the proximity to the central line that represents the zero error, and 
representing a low level of error in the 3500 instances included in which the results generated in each phase were 
numerically close to 0. In the central column, the highest frequency was identified, corresponding to 3607 data, of 
which 2588 were obtained in the training phase, 514 in the validation phase and 505 in the test phase. Average total 
error was 3%, with a standard deviation of 0.5 and an evident efficiency in the learning process of the intelligent 
model, framed by the decrease of the error as the development of the model progressed. 

 
Fig. 5. Error histogram obtained for each structured intelligent model 

In the present work, highly accurate comparative schemes were developed for two specific flow patterns since they 
are the most like other geometric configurations developed inside the pipelines. One of the flow patterns analyzed 
was the annular (A) in the horizontal pipe due to its physical similarity to flow patterns with the dispersion of oil in 
water, water in oil, and the combination between them when it begins its formation.  
Fig. 6 compares the actual data obtained from the literature for the annular flow pattern in the horizontal pipe (247) 
(a) and the results obtained by the developed predictive model (b). In the predicted results, four flow patterns different 
from the annular one are identified due to the minimum level of uncertainty presented considering the model and the 
similarity in the velocity interval in which the additional flow patterns are developed, with a quantity of 8 data for 
DO/W, 3 for DO/W & W, 2 for DW/O and 1 for DW/O & DO/W, thus generating 233 annular flow pattern points 
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coincident with the experimental ones, which is shown in the cell in the Fig. 6 with equal velocities values for water 
and oil in both experimentation and prediction, but showing a different flow pattern. 

 
(a) 

 
 

(b) 

Fig. 6. (a) Annular flow map obtained from literature data; (b) Flow map obtained from the values generated by the 
predictive model for the annular flow pattern 

Velocity range reached by water and oil are [0 to 2.0] and [0 to 2.5], respectively. Asimismo, es percibida una 
distribución rectangular en la matriz de puntos plasmados en la figure 6 (a) y (b) con una leve tendencia de 
agrupamiento mayor en las zonas con velocidades del aceite inferiores a 0.7 [m/s]. 
Figure 6 (b) allows us to conclude that the neural network had a medium level of accuracy in the area where the 
proximity between the experimental points are numerically similar to those presented by the DO/W, DO/W & W, 
DW/O and DW/O & DO/W flow patterns, which can be related to the fact that the points are located in the phase 
inversion zones, characteristic of multiphase flows under certain conditions of each flow. 
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(a) 

 
 

 (b) 
Fig. 7. (a) Oil in water dispersion flow map obtained from literature data; (b) Flow map obtained from the values 

generated by the predictive model for the oil in water dispersion flow pattern 

For vertical pipe, the flow pattern analyzed was DO/W, with a total amount of 947 data Fig 7 (a). The predictive model 
Fig. 7 (b) has an approximation level of 1.38 %, which is visualized in the graphs generated for this flow pattern since, 
in this case, 785 points were accurately predicted for DO/W, followed by 154 points for DW/O and 8 points for SW/O. 
The two flow patterns that appear in the predictive model are directly related to the similarity of the velocity parameters 
to generate their formation. This comparison is presented in Fig. 7, where it shows for the same water and oil 
velocities a different flow pattern. The velocity ranges in [m/s] for the collected information are [0 to 3.5] and [0 to 1.6] 
for oil and water, respectively. Also, Fig. 7 (b) shows the identification of two flow patterns with which the DO/W is 
similar to DW/O and Slug, since the phase reversal zones are close to the analyzed points. 

4 CONCLUSIONS 
An artificial neural network model was developed to identify flow patterns in horizontal and vertical pipes taking as 
input parameters the surface velocities of each fluid, the velocity of the mixture, the volumetric fraction of the 
substances, diameter, and the inclination of pipelines, and the oil viscosity. The model has eight inputs, two hidden 
layers, 45 neurons in each hidden layer, the TanSig activation function, the Levenberg-Marquardt training function, 
and a training set of 6993 data. 
The mean square error obtained for the best intelligent model developed was 1.38%, accompanied by a maximum 
correlation coefficient of 0.79. These values were the maximum overall values of the whole sequence obtained by 
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training the model with 70% of the information, validating it with 15% of the available information, and testing it with 
around 15%. 
One of the disadvantages of the method used is that highly reliable experimental data is needed for training, making 
it dependent on them. In certain cases, a reasonable or minimum amount of data is needed for correct learning, 
limiting the intelligent method to the amount of experimental data. One could think in the future of creating hybrid 
methods that improve their efficiency and reduce their limitations, making them more robust. 
The main problems presented in this research were the identification of the ideal combinations in the number of 
neurons included in each hidden layer of the artificial neural network and the definition of the number of epochs 
programmed for the training and validation phases. Thus, they were solved by means of the organization and 
exhaustive execution of simulations with combinations in neuron number within the range between 1 and 100, with 
a 1 to 1 variation in the number of neurons included in each hidden layer. Also, to define the number of epochs 
required, was implemented the stabilization criterion generated by the error curve with a variation of less than 1% in 
10 consecutive epochs. 
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