DOI: 10.5937/jaes18-25495
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.

Volume 18 article 678 pages: 207 - 215
Forest or land fire is a disaster that commonly occurred in Indonesia mainly in Kalimantan and Sumatera. Optical
remote sensing satellite becomes a promising technology that can be utilized to identify the burned area in quick time
for disaster management response.This study evaluated the use of supervised machine learning, such as Support
Vector Machine (SVM), Random Forest (RF), and Deep Neural Network (DNN) to classify burned area in the Central
Kalimantan province on June and August 2019 as pre-fire event and post-fire event using Sentinel-2 imageries.
An imbalanced and a balanced dataset with varying hyper-parameter were used on those classifiers. Hotspot data
derived from MODIS and Suomi NPP data are also used as training and testing dataset. Based on the study, the
imbalanced dataset influences precision and recall values, as well as the accuracy of SVM and DNN classifiers, but
not as much in RF. RF classifier outperforms SVM and DNN in terms of precision, recall, and accuracy for both a
balanced dataset and an imbalanced dataset with the accuracy ranged from 98.2 -99.3%. The accuracy of SVM classifier is ranged from 94.7-98.1% for an imbalanced dataset and 90.4 % - 98.2 % for a balanced dataset. Although the
high accuracy is still can be achieved in DNN classifier, there is a changing accuracy from 98.5-98.8 % in a balanced
dataset to 95.5-95.7% in an imbalanced dataset. These fi ndings imply that the high accuracy is still can be achieved
by SVM, RF, and DNN classifiers with an imbalanced or a balanced dataset.
This research is funded by Universitas Indonesia under
the PITQQ Grant number NKB-00321/UN2.R3.1/
HKP.05.00/2019. Also, the authors thank the Disaster
Division, Remote Sensing Application Center - Indonesian
National Institute of Aeronautics and Space for giving
valuable advice to this research.
1. Parwati, S., Zubaidah, A., Vetrita, Y., Yulianto, F., Sukowati, K. A. D., Khomarudin, M. R. (2012). Kapasitas indeks lahan terbakar normalized burn ratio (NBR) dan normalized difference vegetation index (NDVI) dalam mengidentifikasi bekas lahan terbakar berdasarkan data SPOT-4. Jurnal Ilmiah Geomatika, vol.18, 29–41
2. Suwarsono., Rokhmatuloh., Waryono, T. (2013). Pengembangan model identifikasi daerah bekas kebakaran hutan dan lahan (burned area) menggunakan citra MODIS di Kalimantan. Jurnal Penginderaan Jauh, vol.10, 93–112
3. Zubaidah, A., Vetrita, Y., Khomarudin, M. R. (2014). Validasi hotspot MODIS di wilayah sumatera dan kalimantan berdasarkan data penginderaan jauh SPOT-4 tahun 2012. Jurnal Penginderaan Jauh vol. 11, 1–15
4. The World Bank. (2016). Laporan pengetahuan lanskap berkelanjutan Indonesia: Kerugian dari kebakaran hutan. Jakarta
5. Ministry of Environment and Forestry Republic of Indonesia. Rekapitulasi luas kebakaran hutan dan lahan (Ha) per provinsi di Indonesia tahun 2014-2019, from: http://sipongi.menlhk.go.id/hotspot/luas_kebakaran, accessed 2019-11-01
6. Pinem, T. (2016). Kebakaran hutan dan lahan gambut: kajian teologi ekofeminisme. Gema Teologi, vol.1, no. 2,139-166
7. Yulianti, N. (2018) Pengenalan bencana kebakaran dan kabut asap lintas batas, 1st ed., IPB Press: Bogor
8. Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse, M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A., Hawbaker, T. J., Giglio, L. (2019). Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, vol.225, 45–64, DOI: 10.1016/j.rse.2019.02.013
9. Fanin, T., Van Der Werf, G.R. (2015). Relationships between burned area, forest cover loss, and land cover change in the Brazilian Amazon based on satellite data. Biogeosciences, vol. 12, no.20, 6033–6043, DOI: 10.5194/bg-12-6033-2015
10. Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., Plummer, S. (2018). Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies. Earth System Science Data, vol.10, 2015–2031, DOI: 10.5194/essd-2018-46
11. Langford, Z. L., Kumar, J., Hoffman, M.F. (2018). Wildfi re mapping in interior alaska using deep neural networks on imbalanced datasets. 2018 IEEE International Conference on Data Mining Workshops (ICDMW)
12. Mallinis, G., Koutsias, N. (2012). Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. International Journal of Remote Sensing, vol.33, no.14, 4408–4433, DOI: 10.1080/01431161.2011.648284
13. Bastarrika, A., Alvarado, M., Artano, K., Martinez, M. P., Mesanza, A., Torre, L., Ramo, R., Chuvieco, E. (2014) BAMS: a tool for supervised burned area mapping using landsat data. Remote Sensing, vol.6, no. 12, 12360–12380, DOI: 10.3390/rs61212360
14. Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H. H., Li, Z. (2019). Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach. Remote Sensing of Environment, vol. 231, DOI: 10.1016/j.rse.2019.111254
15. Verhegghen, A., Eva, H., Ceccherini, G., Achard, F., Gond, V., Gourlet-Fleury, S., Cerutti, P.O. (2016) The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sensing, vol.8, no.12, DOI: 10.3390/rs8120986
16. Amos, C., Petropoulos, G. P., Ferentinos, K.P. (2019). Determining the use of Sentinel-2A MSI for wildfi re burning & severity detection. International Journal of Remote Sensing, vol.40, no. 7, 905–930, no. 3, DOI:10.1080/01431161.2018.1519284
17. Filipponi, F. (2018). BAIS2: burned area index for Sentinel- 2. Proceedings, vol. 2, DOI: 10.3390/ecrs-2-05177
18. Filipponi, F. (2019). Exploitation of Sentinel-2 time series to map burned areas at the national level: a case study on the 2017 Italy wildfires. Remote Sensing, vol.11, no. 6, DOI: 10.3390/rs11060622
19. Roteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E. (2019). Development of a Sentinel- 2 burned area algorithm: Generation of a small fi re database for sub-Saharan Africa. Remote Sensing of Environment, vol. 222, 1-17, DOI: 10.1016/j.rse.2018.12.011
20. Jozdani, S. E., Johnson, B. A., Chen, D. (2019). Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, vol. 11, no. 14, DOI: 10.3390/rs11141713
21. Noi, P. T., Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors, vol. 18, no. 1, 10.3390/ s18010018.
22. Maxwell, A. E., Warner, T. A., Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, vol. 39, no. 9, 2784–2817, DOI: 10.1080/01431161.2018.1433343
23. Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., Fraundorfer, F. (2017). IEEE Geoscience and Remote Sensing Magazine. October 2017, p. 1–60, DOI: 10.1109/MGRS.2017.2762307
24. Zhang, X., Chen, G., Wang, W., Wang, Q., Dai, F. (2017). Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising autoencoders. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,vol. 10, no. 7, 3373–3385, DOI: 10.1109/JSTARS.2017.2672736
25. Pereira, A. A., Pereira, J.M. C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T. (2017). Burned area mapping in the Brazilian savanna using a one-class support vector machine trained by active fires. Remote Sensing, vol. 9, no. 11, DOI: 10.3390/rs9111161
26. Ramo, R., Chuvieco, E. (2017). Developing a random forest algorithm for MODIS global burned area classification. Remote Sensing, vol.9, no. 11, DOI: 10.3390/rs9111193
27. Ramo, R., García, M., Rodríguez, D., Chuvieco, E. (2018). A data mining approach for global burned area mapping. International Journal of Applied Earth Observation and Geoinformation, vol.73, 39–51, DOI: 10.1016/j.jag.2018.05.027
28. de Carvalho, N. S., Ferreira, I.J. M., Korting, T. S., Eduardo, L., Aragao, C.D., Anderson, L.O. (2018). Random forest and support vector machine applied for mapping burned areas in Amazon. Proceedings of XIX Brazilian Symposium on Remote Sensing p. 2833–2836, ISBN: 978-85-17-00097-3
29. Mallinis, G., Mitsopoulos, I., Chrysafi , I. (2018). Evaluating and comparing Sentinel 2A and Landsat-8 operational land imager (OLI) spectral indices for estimating fi re severity in a mediterranean pine ecosystem of Greece. GI Science& Remote Sensing, vol. 55, no. 1, 1–18, DOI: 10.1080/15481603.2017.1354803
30. Pepe, M., & Parente, C. [2018]. Burned area recognition by change detection analysis using images derived from Sentinel-2 satellite: The case study of Sorrento Peninsula, Italy. Journal of Applied Engineering Science, 16(2), 225-232.
31. ESA. (2015). Sentinel-2 user handbook, European Space Agency
32. Lasaponara, R., Tucci, B., Ghermandi, L. (2018). On the use of satellite Sentinel 2 data for automatic mapping of burnt areas and burn severity. Sustainability, vol. 10, no. 11, DOI: 10.3390/su10113889
33. Huang, C., Davis, L.S., Townshend, J.R.G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing,vol. 23, no. 4, 725–749, DOI: 10.1080/01431160110040323