Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

MARKET BASKET ANALYSIS OF ADMINISTRATIVE PATTERNS DATA OF CONSUMER PURCHASES USing DATA MINing TECHNOLOGY


DOI: 10.5937/jaes0-32019 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 937 pages: 339-345

Lukman Samboteng*
Politeknik STIA LAN Makassar, Makassar, Indonesia

Rulinawaty
Universitas Terbuka, Indonesia

M.Rachmat Kasmad
Universitas Negeri Makassar, Makassar, Indonesia

Mutmainnah Basit
Universitas Negeri Makassar, Makassar, Indonesia

Robbi Rahim
Sekolah Tinggi Ilmu Manajemen Sukma, Medan, Indonesia

Food is the ingredient that enables people to grow, develop, and achieve. For this reason, food quality and types of food must be considered so that they are safe for consumption and managed. Some plant-based foodstuffs are often processed and consumed by the community, even the most needed in food processing. In this case, the research was carried out using data mining with market basket analysis algorithms to obtain very valuable information to decide the inventory of the type of material needed. Market Based Analysis method is used to analyze all data and create patterns for each data. One method of Market Based Analysis in question is the association rule with a priori algorithm. This algorithm produces sales transactions with strong associations between items in the transaction which are used as sales recommendations that help users (owners) get recommendations when users see details of the itemset purchased. From the results of the trials in this study, it was found that the greater the minimum support (minsup) and minimum confidence (minconf), the less time it takes to produce recommendations and the fewer recommendations are given, but the recommendations given come from transactions that often appear.

View article

1. Djamaludin, I.; Nursikuwagus, A. (2017). Analisis Pola Pembelian Konsumen Pada Transaksi Penjualan Menggunakan Algoritma Apriori, Simetris : Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, Vol. 8, No. 2, 671. doi:10.24176/simet.v8i2.1566‏

2. Jayapana, R. D.; Rahayu, Y. (2015). Analisis pola pembelian konsumen dengan algoritma apriori pada apotek rahayu jepara, UG Jurnal, Vol. Vol. 8, 1–6

3. Hartama, D.; Perdana Windarto, A.; Wanto, A. (2019). The Application of Data Mining in Determining Patterns of Interest of High School Graduates, Journal of Physics: Conference Series, Vol. 1339, No. 1. doi:10.1088/1742-6596/1339/1/012042

4. Windarto, A. P.; Indriani, U.; Raharjo, M. R.; Dewi, L. S. (2020). Bagian 1: Kombinasi Metode Klastering dan Klasifikasi (Kasus Pandemi Covid-19 di Indonesia), Jurnal Media Informatika Budidarma, Vol. 4, No. 3, 855. doi:10.30865/mib.v4i3.2312

5. Jatnika, H.; Huda, M.; Amelia, R. R.; Manuhutu, M. A. (2021). Analysis of Data Mining in the Group of Water Pollution Areas using the K-Means Method in Indonesia Analysis of Data Mining in the Group of Water Pollution Areas using the K-Means Method in Indonesia, Journal of Physics: Conference Series PAPER. doi:10.1088/1742-6596/1783/1/012014

6. Aprianti, W.; Hafizd, K. A.; Rizani, M. R. (2017). Implementasi Association Rules dengan Algoritma Apriori pada Dataset Kemiskinan, Limits: Journal of Mathematics and Its Applications, Vol. 14, No. 2, 57. doi:10.12962/limits.v14i2.2933

7. Author, F.; Author, S.; Author, T. (2021). Analysis of Library Book Borrowing Patterns Using Apriori Association Data Mining Techniques ( Case : SMK ABC ). doi:10.18421/TEMxx-xx

8. Ge, Z.; Song, Z.; Ding, S. X.; Huang, B. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning, IEEE Access, Vol. 5, 20590–20616. doi:10.1109/ACCESS.2017.2756872

9. Aprilla Dennis. (2013). Belajar Data Mining dengan RapidMiner, Innovation and Knowledge Management in Business Globalization: Theory & Practice, Vols 1 and 2, Vol. 5, No. 4, 1–5

10. Wahidin, W.; Mugihartadi, M.; Hasanah, T.; Aviani, B.; Pratiwi, H. (2021). Application of data mining techniques using the K-Means Method on Unmet Need of Health Services by Province in Indonesia Application of data mining techniques using the K-Means Method on Unmet Need of Health Services by Province in Indonesia, Journal of Physics: Conference Series PAPER. doi:10.1088/1742-6596/1783/1/012012

11. Elsi, Z. R. S.; Pratiwi, H.; Efendi, Y.; Rusdina, R.; Alfah, R.; Windarto, A. P.; Wiza, F. (2020). Utilization of Data Mining Techniques in National Food Security during the Covid-19 Pandemic in Indonesia, Journal of Physics: Conference Series, Vol. 1594, No. 1. doi:10.1088/1742-6596/1594/1/012007

12. Anil Kumar, K. M.; Ajay, B.; Shashank, R.; Amogha Subramanya, D. A. (2019). An apriori method for topic extraction from text files, International Journal of Recent Technology and Engineering, Vol. 8, No. 2, 2516–2521. doi:10.35940/ijrte.A3068.078219

13. Bailey-Wilson, J. E.; Brennan, J. S.; Bull, S. B.; Culverhouse, R.; Kim, Y.; Jiang, Y.; Jung, J.; Li, Q.; Lamina, C.; Liu, Y.; Mägi, R.; Niu, Y. S.; Simpson, C. L.; Wang, L.; Yilmaz, Y. E.; Zhang, H.; Zhang, Z. (2011). Regression and data mining methods for analyses of multiple rare variants in the Genetic Analysis Workshop 17 mini-exome data, Genetic Epidemiology, Vol. 35, No. SUPPL. 1, 92–100. doi:10.1002/gepi.20657

14. Agustiani, N.; Suhendro, D.; Apriori, K.; Pembahasan, A. (2020). Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart, Vol. 2, 300–304

15. Waluyo, A.; Jatnika, H.; Permatasari, M. R. S.; Tuslaela, T.; Purnamasari, I.; Windarto, A. P. (2020). Data Mining Optimization uses C4.5 Classification and Particle Swarm Optimization (PSO) in the location selection of Student Boardinghouses, IOP Conference Series: Materials Science and Engineering, Vol. 874, No. 1, 1–9. doi:10.1088/1757-899X/874/1/012024

16. Supriyadi, B.; Windarto, A. P.; Soemartono, T.; Mungad. (2018). Classification of natural disaster prone areas in Indonesia using K-means, International Journal of Grid and Distributed Computing, Vol. 11, No. 8, 87–98

17. Widyastuti, M.; Fepdiani Simanjuntak, A. G.; Hartama, D.; Windarto, A. P.; Wanto, A. (2019). Classification Model C.45 on Determining the Quality of Custumer Service in Bank BTN Pematangsiantar Branch, Journal of Physics: Conference Series, Vol. 1255, No. 012002, 1–6. doi:10.1088/1742-6596/1255/1/012002

18. Jantan, H.; Jamil, A. Z. M. (2019). Association rule mining based crime analysis using apriori algorithm, International Journal of Advanced Trends in Computer Science and Engineering, Vol. 8, No. 1.5 Special Issue, 18–24. doi:10.30534/ijatcse/2019/0581.52019

19. Yulanda, R. D.; Wahyuningsih, S.; Amijaya, F. D. T. (2019). Association rules with apriori algorithm and hash-based algorithm, Journal of Physics: Conference Series, Vol. 1277, No. 1. doi:10.1088/1742-6596/1277/1/012048

20. Kristiana, T.; Putri, S. A.; Nurmalasari; Handayani, R. I.; Merlina, N.; Yunita, N. (2020). Association Rule Implementation Using Algorithm Apriori to Analize Fishing Pattern in Indonesia, Journal of Physics: Conference Series, Vol. 1641, No. 1. doi:10.1088/1742-6596/1641/1/012072

21. Ruswati, R.; Gufroni, A. I.; Rianto, R. (2018). Associative Analysis Data Mining Pattern Against Traffic Accidents Using Apriori Algorithm, Scientific Journal of Informatics, Vol. 5, No. 2, 91–104. doi:10.15294/sji.v5i2.16199

22. Hanguang, L.; Yu, N. (2012). Intrusion Detection Technology Research Based on Apriori Algorithm, Physics Procedia, Vol. 24, 1615–1620. doi:10.1016/j.phpro.2012.02.238