Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

FAST PATROL BOAT HULL DESing CONCEPTS ON HYDRODYNAMIC PERFORMANCES AND SURVIVABILITY EVALUATION


DOI: 10.5937/jaes0-40698 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1094 pages: 501-531

Angga Sifta Pratama
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Aditya Rio Prabowo*
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Tuswan Tuswan*
Department of Naval Architecture, Universitas Diponegoro, Semarang 50275, Indonesia

Ristiyanto Adiputra
Research Center for Hydrodynamics Technology, National Research and Innovation Agency (BRIN), Surabaya 60112, Indonesia

Nurul Muhayat
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Bo Cao
China Shipbuilding Industry Corporation Economic Research Center, Beijing 100097, China

Syamsul Hadi
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

Indri Yaningsih
Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

A fast patrol boat is one of the ships intended to defend a region and rescue and search in the accident event so that the ship must have a high level of security and survivability performances. This study uses 9 design variations with various main dimensions and hull lengths to determine the effect of the different main dimensions on the hydrodynamic performances. Each criterion was affected to obtain results in hull design, durability, stability, seakeeping, floodable length, and motion sickness incidence (MSI). Simulations are carried out to determine the resistance, stability, ship response when exposed to external forces, passenger comfort, and ship safety level when a leak occurs. Resistance simulation uses a Froude number between 0 to 2.217. Stability simulation analyzes max GZ and angle of maximum GZ on seakeeping, deck wetness, and MSI simulations using 90°, 135°, and 180° wave incidence angles. The addition of bulkheads is carried out to determine the ship's response when it experiences a leak and prevents the ship's sinking when puddles enter the ship with five bulkheads per hull and three variations in distance. Design and simulation of various criteria using Maxsurf software. In the floodable length simulation, the hull added a bulkhead to determine the effect of leakage from several hull designs and watertight bulkhead spacing variations. Design 7 has the best average result compared to other designs from the simulation recapitulation results. It has a small resistance value, a large stability angle, a stable ship response when subjected to external forces, seasickness levels, and a small deck language. From the floodable length graph, it has a high flood limit that makes the ship survive and be safer than other designs. Design 7 refers to the ship Grandweld Shipyard Delivers 21M Discovery Class Vessel Fujairah Pilot.

View article

This work was supported by the RKAT PTNBH Universitas Sebelas Maret–Year 2023, under Research Scheme of “Penelitian Unggulan Terapan” (PUT-UNS), with Research Grant/Contract No. 228/UN27.22/PT.01.03/2023. The support is gratefully acknowledged by the authors.

1.      Rumaji, R., Adiliya, A. (2019). Port Maritime Connectivity in South-East Indonesia: A New Strategic Positioning for Transhipment Port of Tenau Kupang. The Asian Journal of Shipping and Logistics, vol. 35, no. 4, 172–180, DOI: 10.1016/j.ajsl.2019.12.004.

2.      Rizal, N., History, P., Model, S., Perpendiculars, L.B. (2018). Resistance Test of Fast Patrol Ships in the Islands of Indonesia. Journal of Ocean, Mechanical and Aerospace-Science and Engineering, vol. 58, no. 1, 6–11.

3.      Dipua, A., Harahap, N., Puspitawati, D., Aminuddin, F., Prakoso, L.Y. (2021). Sea Defense Strategy the Indonesian Navy in Dealing with the South China Sea Conflict. Italienisch, vol. 11, no. 2, 120–126.

4.      Sutanto, R., Suseto, B., Warka, I.W., Sianturi, D., Rudiawan, B., Archipelago, I. (2021). Marine Defense Strategy In Facing the Threat of Transnational Crime In the Indonesian Archipelago Sea Lane I. Review of International Geographical Education Online, vol. 11, no. 10, 2318-2327.

5.   Risahdi, M., Jaddawi, M., Achmad, M., Henny, A., Prakoso, L. Y., Martani, W. R. (2020). Ambiguous policy on securing the vital objects of the Indonesian armed forces in East Java. Public Policy and Administration Research, vol. 10, no. 1, 52-56, DOI: 10.7176/ppar/10-1-08.

6.   Lajeunesse, A. (2021). Canada’s Arctic Offshore and Patrol Ships (AOPS): Their history and purpose. Marine Policy, vol. 124, 104323, DOI: 10.1016/j.marpol.2020.104323.

7.   Santos, F. M.; Temarel, P., Soares, C. G. (2009). Modal analysis of a fast patrol boat made of composite material. Ocean engineering, vol. 36, no.2, 179-192, DOI: 10.1016/j.oceaneng.2008.09.013.

8.      Prabowo, A. R., Febrianto, R. A., Tuswan, T., Tjahjana, D. D. D. P. (2022). Performance evaluation on the designed v-shaped monohull ship models. Journal of Applied Engineering Science, vol. 20, no. 2, 609-623, DOI: 10.5937/jaes0-29354.

9.  Ashkezari, A. Z., Moradi, M. (2021). Three-dimensional simulation and evaluation of the hydrodynamic effects of stern wedges on the performance and stability of high-speed planing monohull craft. Applied Ocean Research, vol. 110, 102585, DOI: 10.1016/j.apor.2021.102585.

10.   Rupenen, P. (2021). Principles of Ship Buoyancy and Stability. Aalto University Publication Series Science and Technology: Helsinki, Finland.

11.   Zhu, H., Hu, C. (2021). A unified seakeeping and maneuvering analysis of multiple linked towing system with triangular Bodies. Ocean Engineering, vol. 222, 108577, DOI: 10.1016/j.oceaneng.2021.108577.

12.   Luhulima, R. B., Setyawan, D., Utama, I. K. A. P., Utama, A. P. (2014). Selecting monohull, catamaran and trimaran as suitable passenger vessels based on stability and seakeeping criteria. In the International Ship Stability Workshop (ISSW): Kuala Lumpur, Malaysia.

13.   Hamoudi, B. (1995). Dynamic response of hull due to bottom slamming and deck wetness. ProQuest LLC: University of Glasgow: Glasgow, United Kingdom.

14.   Montewka, J., Manderbacka, T., Ruponen, P., Tompuri, M., Gil, M., Hirdaris, S. (2022). Accident susceptibility index for a passenger ship-a framework and case study. Reliability Engineering & System Safety, vol. 218, 108145, DOI: 10.1016/j.ress.2021.108145.

15.   Biran, A., López-Pulido, R. (2014). Flooding and Damage Condition. Ship Hydrostatics and Stability. Elsevier Ltd: Amsterdam, ‎Netherlands, p. 259–290, DOI: 10.1016/b978-0-08-098287-8.00011-6.

16.   Davis, L. D.; Soreng, A. (2009). Twin Drive Gas Turbines in Single Proplusion Package for Norwegian Fast Patrol Boat. In Turbo Expo: Power for Land, Sea, and Air, vol. 48852, p. 949-957, DOI: 10.1115/GT2009-59222

17.   Febrianto, R. A., Prabowo, A. R., Baek, S. J., Adiputra, R. (2021). Analysis of Monohull Design Characteristics as Supporting Vessel for the COVID-19 Medical Treatment and Logistic. Transportation Research Procedia, vol. 55, p. 699-706, DOI: 10.1016/j.trpro.2021.07.038.

18.   Uhls, D. B. (2002). Does the Fast Patrol Boat Have a Future in the Navy?. University of Mississippi: Mississippi, United States.

19.   Aksu, S., Cannon, S., Gardiner, C., Gudze, M. (2002). Hull Material Selection for Replacement Patrol Boats-An Overview. DSTO Aeronautical and Maritime Research Laboratory: Fisherman’s Bend, Australia.

20.   Prabowo, A. R., Martono, E., Muttaqie, T., Tuswan, T., Bae, D. M. Effect of hull design variations on the resistance profile and wave pattern: a case study of the patrol boat vessel. Journal of Engineering Science and Technology, vol. 17, no. 1, 106-126.

21.   Gotman, A. S. (2002). Study of Michell’s integral and influence of viscosity and ship hull form on wave resistance. Oceanic Engineering International, vol. 6, no. 2, 74-115.

22.   Brizzolara, S. (2004). Parametric optimization of SWAT-hull forms by a viscous-inviscid free surface method driven by a differential evolution algorithm. In Proceedings 25th Symposium on Naval Hydrodynamics: St. John’s, Newfoundland and Labrador, vol. 5, p. 47-64.

23.   Utama, I. K. A. P. (1999). Investigation of the viscous resistance components of catamaran forms. Doctoral dissertation - University of Southampton: Southampton, United Kingdom.

24.   Lewis, E. V. (1998). Principles of Naval Architecture (second revision). The Society of Naval Architects and Marine Engineers: Jersey, United States.

25.   Sun, H., Faltinsen, O. M. (2010). Numerical study of planing vessels in waves. Journal of Hydrodynamics, vol. 22, no. 1, 451-458, DOI: 10.1016/S1001-6058(09)60238-9.

26.   Rott, N. (1990). Note on the history of the Reynolds number. Annual review of fluid mechanics, vol. 22, no. 1-12, DOI: 10.1146/annurev.fl.22.010190.000245.

27.   Wu, H., He, J., Liang, H., Noblesse, F. (2019).  Influence of Froude number and submergence depth on wave patterns. European Journal of Mechanics-B/Fluids, vol. 75, 258-270, DOI: 10.1016/j.euromechflu.2018.10.018.

28.   Lawther, A., Griffin, M. J. (1998). Motion sickness and motion characteristics of vessels at sea. Ergonomics, vol. 31, no. 10, 1373-1394, DOI: 10.1080/00140138808966783.

29.   Khai, D. Q., Quynh, N. T. T., Chien, N. M. (2021). A Comparison Study on the Resistance Calculation of Planning Boat. International Journal of Engineering Applied Sciences and Technology, vol. 5, 23–26, DOI: 10.33564/ijeast.2021.v05i12.003.

30.   Tarafder, M. S., Saaki, A. R. (1980). Computation of resistance of high speed planing craft using Savitsky’s theory. AIP Conference Proceedings, vol. 1980, 040006, DOI: 10.1063/1.5044316.

31.   Julianto, R. I., Prabowo, A. R., Muhayat, N., Putranto, T., Adiputra, R. (2021). Investigation of hull design to quantify resistance criteria using Holtrop’s regression based method and Savitsky’s mathematical model: a study case of fishing vessels. Journal of Engineering Science and Technology, vol. 16, no. 2, 1426-1443.

32.   Biran, A., López-Pulido, R. (2013). Ship hydrostatics and stability. Butterworth-Heinemann: Oxford, United Kingdom.

33.   Bačkalov, I., Bulian, G., Rosén, A., Shigunov, V., Themelis, N. (2016). Improvement of ship stability and safety in intact condition through operational measures: challenges and opportunities. Ocean engineering, vol. 120, 353-361, DOI: 10.1016/j.oceaneng.2016.02.011.

34.   Krata, P. (2013). The impact of sloshing liquids on ship stability for various dimensions of partly filled tanks. TransNav-The International Journal on Marine Navigation and Safety of Sea Transportation, vol. 7, 481-489, DOI: 10.12716/1001.07.04.02.

35.   Ruponen, P., Manderbacka, T., Lindroth, D. (2018). On the calculation of the righting lever curve for a damaged ship. Ocean Engineering, vol. 149, 313-324, DOI: 10.1016/j.oceaneng.2017.12.036.

36.   Masoudi, E. (2017). Second generation IMO intact stability vulnerability criteria and its application to ships navigating in Persian Gulf and Oman Sea. International Journal of Maritime Technology, vol. 7, 39-48, DOI: 10.18869/acadpub.ijmt.7.39.

37.   Huang, L.; Deng, X., Bo, Y., Zhang, Y., Wang, P. (2022). Evolutionary optimization assisted delayed deep cycle reservoir modeling method with its application to ship heave motion prediction. ISA transactions, vol. 126, 638-648, DOI: 10.1016/j.isatra.2021.08.020.

38.   Ueng, S. K., Lin, D., Liu, C. H. (2008). A ship motion simulation system. Virtual reality, vol. 12, no. 1, 65-76, DOI: 10.1007/s10055-008-0088-8.

39.   Yin, J. C., Zou, Z. J., Xu, F. (2013). On-line prediction of ship roll motion during maneuvering using sequential learning RBF neuralnetworks. Ocean Engineering, vol. 61, 139-147, DOI: 10.1016/j.oceaneng.2013.01.005.

40.   Aranda, J., De la Cruz, J. M., Diaz, J. M. (2005). Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice, vol. 13, no. 8, 985-999, DOI: 10.1016/j.conengprac.2004.11.003.

41.   Nguyen, V. M., Jeon, M. J., Yoon, H. K. (2016). Study on the optimal weather routing of a ship considering parametric rolling, slamming and deck wetness. Proceedings of PRADS2016, vol. 4.

42.   Biran, A., Pulido, R. L. (2014). Flooding and Damage Condition, in Ship Hydrostatics and Stability (Second Edition). Butterworth-Heinemann: Oxford, United Kingdom.

43.   Kałkowska, E. (2017). Floodable length of a bulk carrier. Zeszyty Naukowe Akademii Morskiej w Szczecinie, vol. 51, no. 123, 71-77.

44.   Kuznecovs, A., Schreuder, M., Ringsberg, J. W. (2021). Methodology for the simulation of a ship's damage stability and ultimate strength conditions following a collision. Marine Structures, vol. 79, 103087, DOI: 10.1016/j.marstruc.2021.103027.

45.   Nam-Kyun, I. M., Hun, C. (2021). A quantitative methodology for evaluating the ship stability using the index for marine ship intact stability assessment model. International Journal of Naval Architecture and Ocean Engineering, vol. 13, 246-259, DOI: 10.1016/j.ijnaoe.2021.01.005.

46.   Woo, D., Choe, H., Im, N. K. (2021). Analysis of the Relationship between GM and IMO Intact Stability Parameters to Propose Simple Evaluation Methodology. Journal of Marine Science and Engineering, vol. 9, no. 7, 735, DOI: 10.3390/jmse9070735.

47.   Yao, C., Huang, J., Sun, X., Yu, J., Feng, D. (2021). Numerical investigation of side-wall effects on the seakeeping performance of a ship advancing in waves. Ocean Engineering, vol. 239, 109797, DOI: 10.1016/j.oceaneng.2021.109797.

48.   Wang, S. M., Ma, S., Duan, W. Y. (2018). Seakeeping optimization of trimaran outrigger layout based on NSGA-II. Applied Ocean Research, vol. 78, 110-122, DOI: 10.1016/j.apor.2018.06.010.

49.   Scamardella, A.; Piscopo, V. (2014). Passenger ship seakeeping optimization by the Overall Motion Sickness Incidence. Ocean Engineering, vol. 76, 86-97, DOI: 10.1016/j.oceaneng.2013.12.005.

50.   Dhavalikar, S., Dabbi, P. N., Poojari, D., Joga, R., Awasare, S. (2018). Development of empirical formulation for bow flare slamming and deck wetness for displacement vessels. Journal of Marine Science and Application, vol. 17, no. 3, 414-431, DOI: 10.1007/s11804-018-0045-1.

51.   Pennanen, P., Ruponen, P., Nordström, J., Goerlandt, F. (2016).  Application of vessel TRIAGE for a damaged passenger ship. In the International Ship Stability Workshop (ISSW): Stockholm, p. 141-146.

52.   Julianto, R. I., Muttaqie, T., Adiputra, R., Hadi, S., Hidajat, R. L. L. G., Prabowo, A. R. (2020). Hydrodynamic and Structural Investigations of Catamaran Design. Procedia Structural Integrity, vol. 27, 93-100, DOI:  10.1016/j.prostr.2020.07.013.

53.   Medina, J. R., Molines, J., Escrivá, J. A. G.; Aguilar, J. (2020). Bunker consumption of containerships considering sailing speed and wind conditions. Transportation Research Part D: Transport and Environment, vol. 87, 102494, DOI: 10.1016/j.trd.2020.102494.

54.   Yusvika, M., Prabowo, A. R., Baek, S. J., Tjahjana, D. D. D. P. (2020). Achievements in Observation and Prediction of Cavitation: Effect and Damage on the Ship Propellers. Procedia Structural Integrity, vol. 27, 109-116, DOI: 10.1016/j.prostr.2020.07.015.

55.   Nyanya, M. N., Vu, H. B., Schönborn, A., Ölçer, A. (2021). Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier. Sustainable Energy Technologies and Assessments, vol. 47, 101397, DOI: 10.1016/j.seta.2021.101397.

56.   Yusvika, M., Fajri, A., Tuswan, T., Prabowo, A. R., Hadi, S., Yaningsih, I., Muttaqie, T., Laksono, F. B. (2022). Numerical prediction of cavitation phenomena on marine vessel: Effect of the water environment profile on the propulsion performance. Open Engineering, vol. 12, no. 1, 293-312, DOI: 10.1515/eng-2022-0034.

57.   Rahmaji, T., Prabowo, A. R., Tuswan, T., Muttaqie, T., Muhayat, N., Baek, S. J. (2022). Design of Fast Patrol Boat for Improving Resistance, Stability, and Seakeeping Performance. Designs, vol. 6, 105, DOI: 10.3390/designs6060105.