DOI: 10.5937/jaes0-41451
This is an open access article distributed under the CC BY 4.0
Volume 21 article 1118 pages: 767-777
In this paper, a computational fluid dynamic (CFD) model was developed to assess cavitation phenomenon and its local effects on a centrifugal pump. The model included the temperature of the fluid, rotational velocity, and geometric configuration of the suction. The model was validated using the pump characteristics curves of the manufacturer with an error of 5%. Also, the minimum pressure contours and the vapor volume fraction were plotted. These contours show the pump boundary conditions (temperature and angular velocity) before cavitation occurs. Thus, the impeller zone where the cavitation phenomenon is more susceptible to occurrence was identified. In addition, this analysis determined characteristic parameters such as the limit on fluid temperature, the limiting angular velocity of the pump and the ratio between the diameters of the suction pipe and the pump inlet diameter. The proposed methodology is aimed as a reference for the study of local operating parameters to avoid cavitation in various types of hydraulic pumps.
1. L. Bachus and A. Custodio, “Know and understand centrifugal pumps: by Larry Bachus and Angel Custodio” World Pumps, vol. 2003, no. 446, p. 4, Nov. 2003, doi: 10.1016/S0262-1762(03)01102-7.
2. R. Johnson, Handbook of Fluid Dynamics, 2nd ed. 2016.
3. J. K. Myung, B. J. Hyun, and J. C. Wui, “A Study on Prediction of Cavitation for Centrifugal Pump,” World Academy of Science, Engineering and Technology. Intermational Journal of Mechanical and Mechatronics Engineering., vol. 6, 2012.
4. B. K. Sreedhar, S. K. Albert, and A. B. Pandit, “Cavitation damage: Theory and measurements – A review,” Wear, vol. 372–373, pp. 177–196, Feb. 2017, doi: 10.1016/J.WEAR.2016.12.009.
5. F. Zhang, S. Yuan, Q. Fu, J. Pei, M. Bohle, and X. Jiang, “Cavitation-induced unsteady flow characteristics in the first stage of a centrifugal charging pump,” Journal of Fluids Engineering, Transactions of the ASME, vol. 139, no. 1, Jan. 2017, doi: 10.1115/1.4034362/373048.
6. B. K. Sreedhar, S. K. Albert, and A. B. Pandit, “Cavitation damage: Theory and measurements – A review,” Wear, vol. 372–373, pp. 177–196, Feb. 2017, doi: 10.1016/J.WEAR.2016.12.009.
7. N. Zhang, M. Yang, B. Gao, and Z. Li, “Vibration characteristics induced by cavitation in a centrifugal pump with slope volute,” Shock and Vibration, vol. 2015, Jan. 2015, doi: 10.1155/2015/294980.
8. B. Gao, P. Guo, N. Zhang, Z. Li, and M. Yang, “Experimental Investigation on Cavitating Flow Induced Vibration Characteristics of a Low Specific Speed Centrifugal Pump,” Shock and Vibration, vol. 2017, 2017, doi: 10.1155/2017/6568930.
9. R. Azizi, B. Attaran, A. Hajnayeb, A. Ghanbarzadeh, and M. Changizian, “Improving accuracy of cavitation severity detection in centrifugal pumps using a hybrid feature selection technique,” Measurement, vol. 108, pp. 9–17, Oct. 2017, doi: 10.1016/J.MEASUREMENT.2017.05.020.
10. J. Lu, S. Yuan, P. Siva, J. Yuan, X. Ren, and B. Zhou, “The characteristics investigation under the unsteady cavitation condition in a centrifugal pump,” Journal of Mechanical Science and Technology, vol. 31, no. 3, pp. 1213–1222, Mar. 2017, doi: 10.1007/S12206-017-0220-3.
11. D. Alberto et al., “Computational Analysis of Different Turbulence Models in a Vane,” | Indonesian Journal of Science & Technology, vol. 6, no. 1, p. 160, 2021, doi: 10.17509/ijost.v6i1.xxxx.
12. L. Hanimann, L. Mangani, E. Casartelli, and M. Widmer, “Cavitation modeling for steady-state CFD simulations,” IOP Conference Series: Earth and Environmental Science, 2016. doi: 10.1088/1755-1315/49/9/092005.
13. R. N. Pinto, A. Afzal, L. V. D’Souza, Z. Ansari, and A. D. Mohammed Samee, “Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art,” Archives of Computational Methods in Engineering, vol. 24, no. 3, pp. 467–479, Jul. 2017, doi: 10.1007/S11831-016-9175-2.
14. Z. Qin and H. Alehossein, “Heat transfer during cavitation bubble collapse,” Applied Thermal Engineering, vol. 105, pp. 1067–1075, Jul. 2016, doi: 10.1016/J.APPLTHERMALENG.2016.01.049.
15. S. Fujikawa and T. Akamatsu, “Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid,” Journal of Fluid Mechanics, vol. 97, no. 3, pp. 481–512, 1980, doi: 10.1017/S0022112080002662.
16. J. Lu, S. Yuan, P. Siva, J. Yuan, X. Ren, and B. Zhou, “The characteristics investigation under the unsteady cavitation condition in a centrifugal pump,” Journal of Mechanical Science and Technology 2017 31:3, vol. 31, no. 3, pp. 1213–1222, Mar. 2017, doi: 10.1007/S12206-017-0220-3.
17. R. B. Medvitz, R. F. Kunz, D. A. Boger, J. W. Lindau, A. M. Yocum, and L. L. Pauley, “Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD,” Journal of Fluids Engineering, Transactions of the ASME, vol. 124, no. 2, pp. 377–383, 2002, doi: 10.1115/1.1457453.
18. B. K. Sreedhar, S. K. Albert, and A. B. Pandit, “Cavitation damage: Theory and measurements – A review,” Wear, vol. 372–373, pp. 177–196, Feb. 2017, doi: 10.1016/J.WEAR.2016.12.009.
19. S. Hattori and M. Kishimoto, “Prediction of cavitation erosion on stainless steel components in centrifugal pumps,” Wear, vol. 265, no. 11–12, pp. 1870–1874, Nov. 2008, doi: 10.1016/J.WEAR.2008.04.045.
20. L. Alfayez, D. Mba, and G. Dyson, “The application of acoustic emission for detecting incipient cavitation and the best efficiency point of a 60-kW centrifugal pump: Case study,” NDT and E International, vol. 38, no. 5, pp. 354–358, Jul. 2005, doi: 10.1016/J.NDTEINT.2004.10.002.
21. S. F. Chini, H. Rahimzadeh, and M. Bahrami, “Cavitation detection of a centrifugal pump using noise spectrum,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, vol. 1 A, pp. 13–19, 2005, doi: 10.1115/DETC2005-84363.
22. Barnes, “BOMBAS CARACOL DE 1 5-1/ DE 1 10-1.” [Online]. Available: www.barnes.com.co
23. B. Mohammadi and Olivier. Pironneau, Analysis of the K-Epsilon: turbulence model. Chichester West Sussex [etc.]: John Wiley & Sons, 1994.
24. A. Niedźwiedzka, “Homogeneous cavitation modeling – Analysis of basics of mathematical formulation of source terms,” MODELOWANIE INŻYNIERSKIE, vol. 34, no. 65, pp. 75–82, 2017.
25. H. Soyama, “Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number,” Ultrasonics Sonochemistry, vol. 71, p. 105389, Mar. 2021, doi: 10.1016/J.ULTSONCH.2020.105389.
26. T. Abu-Rahmeh, O. Badran, A. Al-Alawin, N. Nashat y A. Awwad, "The Effect of water Temperature and Flow Rate on Cavitation Growth in Conduits", 2018.
27. S. Hu, W. Song, Q. Xu y J. Shi, "The effect of Rotation Speed on Cavitation of Small Flow Micro - High Speed Centrifugal Pump", en 2017 2nd Int. Conf. Mater. Science, Machinery Energy Eng. (MSMEE 2017), Dalian, China, 13–14 de mayo de 2017. Paris, France: Atlantis Press, 2017. Accedido el 20 de junio de 2023. [Online]. Available: https://doi.org/10.2991/msmee-17.2017.183