DOI: 10.5937/jaes0-42436
This is an open access article distributed under the CC BY 4.0
Volume 21 article 1123 pages: 820-826
Friction Stir Processing is considered one of the essential methods for improving the surfaces of polymeric materials by adding reinforcing particles in specific ratios to form a composite material with better surface properties than the properties of the base material. The Friction Stir Processing technique was employed in the present investigation to introduce graphite particles onto the polyvinyl chloride surface. Various volumetric ratios of 5, 8, 11, 14, 17, and 20% were used for the incorporation of graphite particles. Mechanical tests (flexural strength, hardness, and wear resistance) were carried out. The experiments demonstrated a noteworthy enhancement in the measured characteristics, with the most notable outcomes observed when the graphite content was increased by 20%. Consequently, this investigation determined that applying the Friction Stir Processing technique effectively reinforced the polyvinyl chloride surface by forming a successful surface composite.
The writers acknowledge that the Kerbala Technical Institute's mechanical workshop crew made a substantial contribution.
1. A. Sharma, S. Maheshwari, and P. Khanna, “Surface Composite Fabrication by Friction Stir Processing: A Review,” E3S Web of Conferences, vol. 309, p. 01150, 2021, doi: 10.1051/e3sconf/202130901150.
2. R. J. H. W. N. Eswara Prasad, Ed., Aerospace Materials and Material Technologies Volume 1: Aerospace Materials. Springer Singapore, 2017. doi: 10.1007/978-981-10-2134-3.
3. R. Casati and M. Vedani, “Metal matrix composites reinforced by Nano-Particles—A review,” Metals (Basel), vol. 4, no. 1, pp. 65–83, 2014, doi: 10.3390/met4010065.
4. K. Friedrich, Z. Lu, and A. M. Häger, “Overview on polymer composites for friction and wear application,” 1993.
5. “Laser Surface Treatment - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/chemistry/laser-surface-treatment (accessed May 10, 2023).
6. A. Z. Sahin, B. S. Yilbas, and S. S. Akhtar, “Laser Surface Treatment and Efficiency Analysis,” Comprehensive Materials Processing, vol. 9, pp. 307–316, 2014, doi: 10.1016/B978-0-08-096532-1.00916-X.
7. R. Vilar, “Laser surface modification of steel and cast iron for corrosion resistance,” Laser Surface Modification of Alloys for Corrosion and Erosion Resistance, pp. 3–40, Jan. 2012, doi: 10.1533/9780857095831.1.3.
8. S. Valkov, M. Ormanova, and P. Petrov, “Electron-beam surface treatment of metals and alloys: Techniques and trends,” Metals (Basel), vol. 10, no. 9, pp. 1–20, 2020, doi: 10.3390/met10091219.
9. S. H. Choo, S. Lee, and S. J. Kwon, “Effect of flux addition on the microstructure and hardness of TiC-reinforced ferrous surface composite layers fabricated by high-energy electron beam irradiation,” Metall Mater Trans A Phys Metall Mater Sci, vol. 30, no. 12, pp. 3131–3141, 1999, doi: 10.1007/s11661-999-0224-4.
10. K. Weman, “Surface cladding and hard facing methods,” Welding Processes Handbook, pp. 151–156, 2012, doi: 10.1533/9780857095183.151.
11. Y. Wang, X. Zhang, G. Zeng, and F. Li, “Cast sinter technique for producing iron base surface composites,” Mater Des, vol. 21, no. 5, pp. 447–452, 2000, doi: 10.1016/s0261-3069(00)00036-4.
12. A. N. Attia, “Surface metal matrix composites,” Mater Des, vol. 22, no. 6, pp. 451–457, 2001, doi: 10.1016/s0261-3069(00)00081-9.
13. P. Saxena, A. Bongale, and S. Kumar, “A review of friction stir processing in fabricating surface composites for process control and sensor data monitoring,” Mater Today Proc, vol. 50, pp. 2099–2104, Jan. 2022, doi: 10.1016/J.MATPR.2021.09.427.
14. M. S. Węglowski, “Friction stir processing – State of the art,” Archives of Civil and Mechanical Engineering, vol. 18, no. 1, pp. 114–129, 2018, doi: 10.1016/j.acme.2017.06.002.
15. J. Gao, X. Cui, Y. Shen, and L. Yu, “Fabrication of HDPE composites via a novel friction stir processing technology,” Journal of Thermoplastic Composite Materials, vol. 32, no. 10, pp. 1305–1318, 2019, doi: 10.1177/0892705718796543.
16. C. Suryanarayana and N. Al-Aqeeli, “Mechanically alloyed nanocomposites,” Prog Mater Sci, vol. 58, no. 4, pp. 383–502, 2013, doi: 10.1016/j.pmatsci.2012.10.001.
17. V. Sharma, U. Prakash, and B. V. M. Kumar, “Surface composites by friction stir processing: A review,” J Mater Process Technol, vol. 224, pp. 117–134, May 2015, doi: 10.1016/j.jmatprotec.2015.04.019.
18. R. S. Mishra, Z. Y. Ma, and I. Charit, “Friction stir processing: A novel technique for fabrication of surface composite,” Materials Science and Engineering A, vol. 341, no. 1–2, pp. 307–310, 2003, doi: 10.1016/S0921-5093(02)00199-5.
19. J. Iwaszko and M. Sajed, “Technological aspects of producing surface composites by friction stir processing-a review,” Journal of Composites Science, vol. 5, no. 12. MDPI, Dec. 01, 2021. doi:10.3390/jcs5120323.
20. A. A. Hamza and S. R. Jalal, “A review on manufacturing the polymer composites by friction stir processing,” Eur Polym J, vol. 178, p. 111495, Sep. 2022, doi: 10.1016/J.EURPOLYMJ.2022.111495.
21. A. P. Zykova, S. Y. Tarasov, A. V. Chumaevskiy, and E. A. Kolubaev, “A review of friction stir processing of structural metallic materials: Process, properties, and methods,” Metals (Basel), vol. 10, no. 6, pp. 1–35, Jun. 2020, doi: 10.3390/met10060772.
22. Z. Y. Ma, “Friction stir processing technology: A review,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 39 A, no. 3. pp. 642–658, Mar. 2008. doi: 10.1007/s11661-007-9459-0.
23. M. S. Węglowski, “Friction stir processing – State of the art,” Archives of Civil and Mechanical Engineering, vol. 18, no. 1. Elsevier B.V., pp. 114–129, Jan. 01, 2018. doi: 10.1016/j.acme.2017.06.002.
24. B. N. Dhanunjayarao, U. K. Sanivada, N. V. Swamy Naidu, and R. Fangueiro, “Effect of graphite particulate on mechanical characterization of hybrid polymer composites,” Journal of Industrial Textiles, vol. 51, no. 2_suppl, pp. 2594S-2615S, Jun. 2022, doi: 10.1177/15280837211010670.
25. U. Nirmal, S. Lau, U. Nirmal, J. Hashim, and S. T. W. Lau, “TESTING METHODS IN TRIBOLOGY OF POLYMERIC COMPOSITES,” International Journal of Mechanical and Materials Engineering (IJMME), vol. 6, no. 3, pp. 367–373, 2011.
26. A. A. Hamza and S. R. Jalal, “A review on manufacturing the polymer composites by friction stir processing,” Eur Polym J, vol. 178, p. 111495, Sep. 2022, doi: 10.1016/J.EURPOLYMJ.2022.111495.
27. S. Eslami, P. J. Tavares, and P. M. G. P. Moreira, “Friction stir welding tooling for polymers: review and prospects,” International Journal of Advanced Manufacturing Technology, vol. 89, no. 5–8. Springer London, pp. 1677–1690, Mar. 01, 2017. doi: 10.1007/s00170-016-9205-0.
28. A. A. Abbas and H. H. Abdulkadhum, “Effect of Shoulder–Workpiece Interference Depth on the Quality of Friction Stir Welding of AA7075-T6 Aluminium Alloy,” Association of Arab Universities Journal of Engineering Sciences, vol. 26, no. 1, pp. 150–159, Mar. 2019, doi: 10.33261/jaaru.2019.26.1.020.
29. S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, “Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing,” Defence Technology, vol. 13, no. 2, pp. 86–91, Apr. 2017, doi: 10.1016/j.dt.2016.11.003.
30. A. International, “ASTM G99-– 95a: Standard test method for wear testing with a pin-on-disk apparatus,” ASTM International, vol. 1, no. Reapproved, pp. 1–5, 2017.