DOI: 10.5937/jaes0-44872
This is an open access article distributed under the CC BY 4.0
Volume 21 article 1136 pages: 957-962
Bio-composites have become increasingly popular as a substitute for synthetic fibers over the last decade due to their eco-friendly nature. To utilize them effectively in engineering applications, particularly in the automotive industry, a thorough understanding of the material properties is necessary. This experimental investigation focuses on exploring the vibration-damping and acoustic properties of fiber composites made from hemp natural fiber and epoxy resin. The study involved the preparation of composite specimens using both short and long fibers through a hand layup process. The natural frequency and damping ratio of the specimen were computed from time-domain experimental data. The sound absorption coefficient of fiber specimens was determined in the frequency range of 63 Hz to 6300 Hz by using the impedance tube technique. The analysis revealed that the pre-treatment of fiber and the use of long fiber rather than short fiber enhances the damping properties of hemp fiber composites. Immersion of specimens in water resulted in the degradation of damping properties. Acoustic tests clearly showed that the ageing process affected short-treated fiber composites more significantly when compared to long-treated fiber composites.
The authors thank the Department of Aeronautical and Automobile Engineering and, Manipal Institute of Tech-nology, Manipal Academy, Manipal for providing the high computational facility to carry out this research.
1.
ADDIN Mendeley
Bibliography CSL_BIBLIOGRAPHY Di Landro L, Janszen G.(2014)
Composites with hemp reinforcement and bio-based epoxy matrix. Compos Part B
Eng; 67:220–6. doi:10.1016/j.compositesb.2014.07.021.
2.
Liu M,
Thygesen A, Summerscales J, Meyer AS. (2017). Targeted pre-treatment of hemp
bast fibers for optimal performance in biocomposite materials: A review. Ind
Crops Prod; 108:660–83. doi:10.1016/j.indcrop.2017.07.027.
3.
Carvalho
H, Salman H, Leite M. (2018). Natural Fiber Composites and Their Applications :
A Review:1–20. doi:10.3390/jcs2040066.
4.
Pracella
M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E.(2006). Functionalization,
compatibilization and properties of polypropylene composites with Hemp fibers.
Compos Sci Technol; 66:2218–30. doi:10.1016/j.compscitech.2005.12.006.
5.
Assarar
M, Scida D, Zouari W, Saidane EH, Ayad R. (2016). Acoustic emission
characterization of damage in short hemp-fiber-reinforced polypropylene
composites. Polym Compos; 37:1101–12. doi:10.1002/pc.23272.
6.
Li X, Tabil LG, Panigrahi S. (2007). Chemical treatments of natural fiber for use in
natural fiber-reinforced composites: A review. J Polym Environ; 15:25–33.
doi:10.1007/s10924-006-0042-3.
7.
Shahzad
A. (2011). Effects of fiber surface treatments on mechanical properties of hemp
fiber composites. Compos Interfaces;18:737–54. doi:10.1163/156855412X629583.
8.
Abdullah
AH, Azharia A, Salleh FM. (2015). Sound absorption coefficient of natural fibers
hybrid reinforced polyester composites. J Teknol;76:31–6.
doi:10.11113/jt.v76.5643.
9.
Kabir
MM, Wang H, Lau KT, Cardona F, Aravinthan T. (2012). Mechanical properties of
chemically-treated hemp fiber reinforced sandwich composites. Compos Part B Eng;43:159–69.
doi:10.1016/j.compositesb.2011.06.003.
10.
Shaid
Sujon MA, Islam A, Nadimpalli VK. (2021). Damping and sound absorption
properties of polymer matrix composites: A review. Polym Test;104:107388.
doi:10.1016/j.polymertesting.2021.107388.
11.
Seddeq
HS, Aly NM, Marwa A A, Elshakankery MH.(2013). Investigation on sound absorption properties
for recycled fibrous materials. J Ind Text;43:56–73.
doi:10.1177/1528083712446956.
12.
Aziz
SH, Ansell MP. (2004). The effect of alkalization and fiber alignment on the
mechanical and thermal properties of kenaf and hemp bast fiber composites: Part
1 - polyester resin matrix. Compos Sci Technol ;64:1219–30.
doi:10.1016/j.compscitech.2003.10.001.
13.
Placet
V. (2009) Characterization of the thermo-mechanical behaviour of Hemp fibers
intended for the manufacturing of high performance composites. Compos Part A
Appl Sci Manuf;40:1111–8. doi:10.1016/j.compositesa.2009.04.031.
14.
Kumar
DR, Vishnuvardhan R, Rahul R.(2019). Experiment on acoustic and vibration
damping properties of natural fiber reinforced composites. Int J Recent Technol
Eng;8:262–4.
15.
Taban
E, Khavanin A, Jafari AJ, Faridan M, Tabrizi AK. (2019). Experimental and
mathematical survey of sound absorption performance of date palm fibers.
Heliyon;5:e01977. doi:10.1016/j.heliyon.2019.e01977.
16.
Niresh
J, Neelakrishna S, Subharan S, Prabhakaran R. (2015). Performance Testing for
Sound Absorption Coefficient by Using Impedance Tube. Res J Appl Sci Eng
Technol;11:185–9. doi:10.19026/rjaset.11.1706.
17.
Mahmoudi
S, Kervoelen A, Robin G, Duigou L, Daya EM, Cadou JM. (2019). Experimental and
numerical investigation of the damping of flax–epoxy composite plates. Compos
Struct;208:426–33. doi:10.1016/j.compstruct.2018.10.030.
18.
SathishKumar G, Chandrasekaran M, Vinod Kumar T, Vivek P. (2018).
Vibration and damping
characteristics of sisal and glass fiber reinforced polyester composite. Int J
Eng Technol;7:503–9. doi:10.14419/ijet.v7i2.33.14820.
19.
Pavan
A, Dayananda P, Vijaya KM, Hegde S, Narampady Hosagade P. (2019). Influence of
seawater absorption on vibrational and tensile characteristics of
quasi-isotropic glass/epoxy composites. J Mater Res Technol;8:1427–33.
doi:10.1016/j.jmrt.2018.10.008.
20.
Fairlie
G, Njuguna J. (2020).Damping properties of flax/carbon hybrid epoxy/fiber-reinforced
composites for automotive semi-structural applications. Fibers;8:1–15.
doi:10.3390/fib8100064.