DOI: 10.5937/jaes0-47765
This is an open access article distributed under the CC BY 4.0
Volume 22 article 1220 pages: 554-563
Steel fibers have been used for improving the behavior of structural concrete elements for a long time ago. This paper shows the main results from the flexural test of steel fiber reinforced concrete beams, that is to say, flexural strength and toughness. The results were compared with those from the flexural test of reinforced concrete beams with steel bars and plain concrete beams. Steel fiber did not increase the flexural strength and toughness of beams when compare with reinforced beams with steel bars but it does improve the behavior of steel fiber reinforced concrete beams for failure control and gradual mechanics which allows caution about upcoming collapse.
The authors mention that this paper is a product of the research project with code INV-DIS-3767, of the year 2022, whose title is "Estudio del comportamiento mecánico y físico del concreto con adición de bioprecipitación de carbonato de calcio (CaCO₃) mediante el empleo de cepas bacterianas ", and financed by the Universidad Militar Nueva Granada through the Vicerrectoría de Investigaciones.
1.
Harmsen, T. (2005). Diseño
de estructuras de concreto armado. Fondo Editorial Pontificia Universidad
Católica de Perú.
2.
Carvalho, E., Ferreira, E.,
Cunha, J., Rodríguez, C., & Maia, N. (2017). Experimental investigation of
steel-concrete bond for thin reinforcing bars. Latin American Journal of
Solids and Structures, 14(11), 1932-1951. https://doi.org/10.1590/1679-78254116
3.
Hameed, R., Turatsinze, A.,
Duprat, F., & Sellier, A. (2009). Metallic fiber reinforced concrete:
Effect of fiber aspect ratio on the flexural properties. Journal of
Engineering and Applied Sciences, 5(4), 67-72. https://www.semanticscholar.org/paper/METALLIC-FIBER-REINFORCED-CONCRETE%3A-EFFECT-OF-FIBER-Hameed-Turatsinze/ab10a1b64e19e18112ed074acd8febc7578d908e
4.
Li,
B., Zhang, W., Xie, H., & Yang, X. (2018). Effects
of fiber type, volume fraction, and aspect ratio on the flexural and acoustic
emission behaviors of steel fiber reinforced concrete. Construction and
Building Materials, 181, 474-486. https://doi.org/10.1016/j.conbuildmat.2018.06.065
5.
Zeybek, Ö., Gül, M., &
Koçak, Y. (2022). Performance evaluation of fiber-reinforced concrete produced
with steel fibers extracted from waste tire. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.1057128
6.
Anil, N. (2018). Mechanical
properties of steel fiber reinforced self-compacting concrete. International
Journal of Engineering Technologies, 4, 33-40.
https://doi.org/10.19072/ijet.340259
7.
Jabir, H. A., Mohamed, A.,
& Ali, S. (2020). Experimental tests and reliability analysis of the
cracking impact resistance of UHPFRC. Fibers, 8(12), 74. https://doi.org/10.3390/fib8120074
8.
Rashid, K., & Balouch, N.
(2017). Influence of steel fibers extracted from waste tires on shear behavior
of reinforced concrete beams. Structural Concrete, 18(4), 589-596.
https://doi.org/10.1002/suco.201600194
9.
Caggiano, A., Folino, P., Lima,
C., Martinelli, E., & Pepe, M. (2017). On the mechanical response of hybrid
fiber reinforced concrete with recycled and industrial steel fibers. Construction
and Building Materials, 147, 286-295. https://doi.org/10.1016/j.conbuildmat.2017.04.160
10.
Domski,
J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste
steel fiber used as reinforcement for concrete. Journal of Cleaner
Production, 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165
11.
Hu, H., Papastergiou, P.,
Angelakopoulos, H., Guadagnini, M., & Pilakoutas, K. (2018). Mechanical
properties of SFRC using blended manufactured and recycled tyre steel fibres. Construction
and Building Materials, 163, 376-389. https://doi.org/10.1016/j.conbuildmat.2017.12.116
12.
Carrillo, J.,
Lizarazo-Marriaga, J., & Lamus, F. (2020). Properties of steel fiber
reinforced concrete using either industrial or recycled fibers from waste
tires. Fibers and Polymers, 21, 2055-2067.
https://doi.org/10.1007/s12221-020-1076-1
13.
Simalti, A., & Singh, A. P.
(2020). Comparative study on direct shear behavior of manufactured and recycled
shredded tyre steel fiber reinforced self-consolidating concrete. Journal of
Building Engineering, 29, 101169. https://doi.org/10.1016/j.jobe.2020.101169
14.
Lu, B., Shi, C., Cao, Z., Guo,
M., & Zheng, J. (2019). Effect of carbonated coarse recycled concrete
aggregate on the properties and microstructure of recycled concrete. Journal
of Cleaner Production, 233, 421-428. https://doi.org/10.1016/j.jclepro.2019.05.350
15.
Zhan, B. J., Xuan, D. X., Zeng,
W., & Poon, C. S. (2019). Carbonation treatment of recycled concrete
aggregate: Effect on transport properties and steel corrosion of recycled
aggregate concrete. Cement and Concrete Composites, 104, 103360. https://doi.org/10.1016/j.cemconcomp.2019.103360
16.
Shi, C., Wu, Z., Cao, Z., Ling,
T. C., & Zheng, J. (2018). Performance of mortar prepared with recycled
concrete aggregate enhanced by CO2 and pozzolan slurry. Cement and Concrete
Composites, 86, 130-138. https://doi.org/10.1016/j.cemconcomp.2017.10.013
17.
ASTM International. (2016). ASTM
A706/A706M Standard Specification for Deformed and Plain Low-Alloy Steel Bars
for Concrete Reinforcement. West Conshohocken, PA.
18.
ASTM International. (2021). Standard
test method for compressive strength of cylindrical concrete specimens.
West Conshohocken, PA.
19.
ASTM International. (2010). ASTM
C1609 Standard Test Method for Flexural Performance of Fiber-Reinforced
Concrete (Using Beam with Third-Point Loading).
20.
ASTM International. (2021). ASTM
C78/C78M-21 Standard Test Method for Flexural Strength of Concrete (Using
Simple Beam with Third-Point Loading). West Conshohocken, PA.
21.
Franco Segura, J. I. (2002). Estructuras
de concreto 1. Universidad Nacional de Colombia.
22.
Asociación Colombiana de
Ingeniería Sísmica. (2010). Reglamento Colombiano de Construcción Sismo
Resistente NSR-10.
23.
Aslani, F., & Nejadi, S.
(2012). Bond behavior of reinforcement in conventional and self-compacting
concrete. Advances in Structural Engineering, 15(12), 2033-2051. https://doi.org/10.1260/1369-4332.15.12.2033