DOI: 10.5937/jaes0-50995
This is an open access article distributed under the CC BY 4.0
Volume 22 article 1229 pages: 646-653
Road infrastructure development is carried out to be able to serve the flow of goods and passengers smoothly, safely, and comfortably. Infrastructure maintenance is needed to keep roads always in good condition. The road infrastructure consumes a significant amount of budget, both for road maintenance and improvement. The Central Java Provincial Government, through the Public Works Service for Highways and Civil Works, has a prioritization sequence to maintain road conditions to facilitate smooth, safe, and comfortable traffic. Continuous and sustainable maintenance of constructed roads is necessary to ensure their stability. Therefore, a large budget is required to carry out this maintenance. In 2023, the budget requirement for routine road maintenance amounted to IDR 441.246.000.000,00. However, the actual budget realization for 2023 was only IDR 125.686.108.000,00, fulfilling just 28,48% of the calculation model using from using analysis for Planning, Programming, and Budgeting (P/KRMS analysis) application. Analysis results indicate that the budget realization for routine road maintenance in 2023 did not meet the requirement to maintain a stable road surface, as evidenced by a 1,61% decrease in road surface condition from 2022. The Central Java Provincial Public Works Service for Highways and Civil Works faces this challenge by maximizing the involvement of the Community Group for Highways Development (Mas BIMA) in expediting the handling process.
1.
W. T. Hermani, A. Setyawan, U. S.
Maret, and U. S. Maret. (2023). The Effect of Toll Road Operation On National
Road Performance In Central Java Province.
2.
E.
Calderón, M. Valenzuela, V. Minatogawa, and H. Pinto. (2023). Development of
the Historical Analysis of the Seismic Parameters for Retroffiting Measures in
Chilean Bridges, Buildings, vol. 13, no. 2, pp. 1–17, doi:
10.3390/buildings13020274.
3.
I. N.
D. P. Putra, Y. S. Amalia, and G. A. M. K. Dewi. (2019). Framework of
construction procedure manual of the project management unit and other
stakeholders in the Surabaya City Government, Int. J. Adv. Res. Eng.
Technol., vol. 10, no. 6, pp. 174–182, doi: 10.34218/IJARET.10.6.2019.021.
4.
N. Du, M. Zhang, J. Huang, and G. Wang. (2019). A conflict-detecting and
early-warning system for multi-plan integration in small cities and towns based
on cloud service platform, Smart Cities, vol. 2, no. 3, pp. 388–401,
doi: 10.3390/smartcities2030024.
5.
Q.
Wang, Y. Chen, H. Guan, O. Lyulyov, and T. Pimonenko. (2022). Technological
Innovation Efficiency in China: Dynamic Evaluation and Driving Factors, Sustain.,
vol. 14, no. 14, doi: 10.3390/su14148321.
6.
C. Liu.
(2021). Infrastructure public–private partnership (Ppp) investment and
government fiscal expenditure on science and technology from the perspective of
sustainability, Sustain., vol. 13, no. 11, doi: 10.3390/su13116193.
7.
F. M.
Suryani, C. Mutiawati, and R. Faisal. (2023). The Influence of Service
Performance And Passenger Satisfaction On Public Transport Loyalty In A Small
City In A Developing Country, pp. 644–655.
8.
W. Tri
Hermani, A. Setyawan, Syafi’i, and E. Gravitiani. (2023). Analysis of
Willingness to Pay for Toll Users in Central Java Province, E3S Web Conf.,
vol. 425, p. 03001, doi: 10.1051/e3sconf/202342503001.
9.
M.
Shatanawi, A. Alatawneh, and F. Mészáros. (2022). Implications of static and
dynamic road pricing strategies in the era of autonomous and shared autonomous
vehicles using simulation-based dynamic traffic assignment: The case of
Budapest, Res. Transp. Econ., vol. 95, no. August, doi:
10.1016/j.retrec.2022.101231.
10.
M.
Bagheri, H. Ghafourian, M. Kashefiolasl, M. T. S. Pour, and M. Rabbani. (2020).
Travel management optimization based on air pollution condition using markov
decision process and genetic algorithm (case study: Shiraz city), Arch.
Transp., vol. 53, no. 1, pp. 89–102, doi: 10.5604/01.3001.0014.1746.
11.
A.
Kherraki and R. El Ouazzani. (2022). Deep convolutional neural networks
architecture for an efficient emergency vehicle classification in real-time
traffic monitoring, IAES Int. J. Artif. Intell., vol. 11, no. 1, pp.
110–120, doi: 10.11591/ijai.v11.i1.pp110-120.
12.
W. T.
Hermani, A. Setyawan, and Syafi i. (2023). Estimation of the origin-destination
matrix from national road traffic data in Central Java Province using the least
squares method, E3S Web Conf., vol. 429, pp. 0–5, doi:
10.1051/e3sconf/202342903006.
13.
W. T.
Hermani, A. Setyawan, and E. Gravitiani. (2023). The Influence of Toll Road
Operations on the Economy in Central Java Province, Int. J. Transp. Dev.
Integr., vol. 7, no. 2, pp. 139–145, doi: 10.18280/ijtdi.070209.
14.
R. Zhang, L. Zhao, X. Qiu, H. Zhang, and X. Wang. (2020). A comprehensive comparison of the
vehicle vibration energy harvesting abilities of the regenerative shock
absorbers predicted by the quarter, half and full vehicle suspension system
models, Appl. Energy, vol. 272, no. February, p. 115180, doi:
10.1016/j.apenergy.2020.115180.
15.
S.
Baniya, N. Rocha, and M. Ruta. (2020). Trade effects of the New Silk Road: A
gravity analysis, J. Dev. Econ., vol. 146, no. February, p. 102467, doi:
10.1016/j.jdeveco.2020.102467.
16.
R.
Pokharel, L. Bertolini, M. te Brömmelstroet, and S. R. Acharya. (2021). Spatio-temporal
evolution of cities and regional economic development in Nepal: Does transport
infrastructure matter?, J. Transp. Geogr., vol. 90, no. November 2020,
doi: 10.1016/j.jtrangeo.2020.102904.
17.
F.
Simini, G. Barlacchi, M. Luca, and L. Pappalardo. (2021). A Deep Gravity model
for mobility flows generation, Nat. Commun., vol. 12, no. 1, doi:
10.1038/s41467-021-26752-4.
18.
Hasanuddin,
A. Setyawan, and B. Yulianto. (2018). Evaluation of Road Performance Based on
International Roughness Index and Falling Weight Deflectometer, IOP Conf.
Ser. Mater. Sci. Eng., vol. 333, no. 1, doi:
10.1088/1757-899X/333/1/012090.
19.
Y.
Song, D. Thatcher, Q. Li, T. McHugh, and P. Wu. (2021). Developing sustainable
road infrastructure performance indicators using a model-driven fuzzy spatial
multi-criteria decision making method, Renew. Sustain. Energy Rev., vol.
138, no. February 2020, p. 110538, doi: 10.1016/j.rser.2020.110538.
20.
E. V.
Zhustareva and V. I. Bochkarev. (2020). The complex method of estimation of
highway maintenance quality taking into account the International Roughness
Index, IOP Conf. Ser. Mater. Sci. Eng., vol. 832, no. 1, doi:
10.1088/1757-899X/832/1/012035.
21.
P.
Shivananda and S. K. Khatua. (2022). Study on International Road Roughness
index (IRI) using Smart phone application from REVA University to Kodigehalli
gate, Bangalore, India, IOP Conf. Ser. Mater. Sci. Eng., vol. 1255, no.
1, p. 012020, doi: 10.1088/1757-899x/1255/1/012020.
22.
D. J. Forkenbrock and G. Weisbrod. (2001). Guidebook for Assessing the Social and
Economic Effects of Transportation Projects, NCHRP Report 456.
23.
T.
Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier. (2022). Deep
Learning-Based Object Detection and Scene Perception under Bad Weather
Conditions, Electron., vol. 11, no. 4, pp. 1–11, doi:
10.3390/electronics11040563.
24.
X. Xu et
al. (2022). Crack Detection and Comparison Study Based on Faster R-CNN and
Mask R-CNN, Sensors, vol. 22, no. 3, doi: 10.3390/s22031215.
25.
J.
Santos, C. Torres-Machi, S. Morillas, and V. Cerezo. (2022). A fuzzy logic
expert system for selecting optimal and sustainable life cycle maintenance and
rehabilitation strategies for road pavements, Int. J. Pavement Eng.,
vol. 23, no. 2, pp. 425–437, doi: 10.1080/10298436.2020.1751161.
26.
M.
Jurkevičius, V. Puodžiukas, and A. Laurinavičius. (2020). Implementation of
road performance calculation models used in strategic planning systems for
Lithuania conditions, Balt. J. Road Bridg. Eng., vol. 15, no. 3, pp.
146–156, doi: 10.7250/bjrbe.2020-15.489.
27.
O.
Martinez, J. M. Garcia, and N. Kumar. (2021). The gravity model as a tool for
decision making. Some highlights for Indian roads, Transp. Res. Procedia,
vol. 58, no. 2019, pp. 333–339, doi: 10.1016/j.trpro.2021.11.045.
28.
Z. Wu,
M. Huang, A. Zhao, and Z. Lan. (2021). Urban Traffic Planning and Traffic Flow
Prediction based on ulchis gravity model and Dijkstra algorithm. J. Phys.
Conf. Ser., vol. 1972, no. 1, doi: 10.1088/1742-6596/1972/1/012080.