Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

IMPROVED ROAD PERFORMANCE THROUGH THE IMPLEMENTATION OF ROUTINE ROAD MAINTENANCE MANAGEMENT SYSTEM


DOI: 10.5937/jaes0-50995 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1229 pages: 646-653

AR. Hanung Triyono*
Public Work Department, Jl Madukoro AA-BB Semarang Central Java, Indonesia

Wahyuningsih Tri Hermani
Sebelas Maret University, Department of Civil Engineering, Surakarta, Indonesia

Nanang Syarifuddin Amrulloh
Public Work Department, Jl Madukoro AA-BB Semarang Central Java, Indonesia

Ary Setyawan
Sebelas Maret University, Department of Civil Engineering, Surakarta, Indonesia

Road infrastructure development is carried out to be able to serve the flow of goods and passengers smoothly, safely, and comfortably. Infrastructure maintenance is needed to keep roads always in good condition. The road infrastructure consumes a significant amount of budget, both for road maintenance and improvement. The Central Java Provincial Government, through the Public Works Service for Highways and Civil Works, has a prioritization sequence to maintain road conditions to facilitate smooth, safe, and comfortable traffic. Continuous and sustainable maintenance of constructed roads is necessary to ensure their stability. Therefore, a large budget is required to carry out this maintenance. In 2023, the budget requirement for routine road maintenance amounted to IDR 441.246.000.000,00. However, the actual budget realization for 2023 was only IDR 125.686.108.000,00, fulfilling just 28,48% of the calculation model using from using analysis for Planning, Programming, and Budgeting (P/KRMS analysis) application. Analysis results indicate that the budget realization for routine road maintenance in 2023 did not meet the requirement to maintain a stable road surface, as evidenced by a 1,61% decrease in road surface condition from 2022. The Central Java Provincial Public Works Service for Highways and Civil Works faces this challenge by maximizing the involvement of the Community Group for Highways Development (Mas BIMA) in expediting the handling process.

View article

1.      W. T. Hermani, A. Setyawan, U. S. Maret, and U. S. Maret. (2023). The Effect of Toll Road Operation On National Road Performance In Central Java Province.

2.      E. Calderón, M. Valenzuela, V. Minatogawa, and H. Pinto. (2023). Development of the Historical Analysis of the Seismic Parameters for Retroffiting Measures in Chilean Bridges, Buildings, vol. 13, no. 2, pp. 1–17, doi: 10.3390/buildings13020274.

3.      I. N. D. P. Putra, Y. S. Amalia, and G. A. M. K. Dewi. (2019). Framework of construction procedure manual of the project management unit and other stakeholders in the Surabaya City Government, Int. J. Adv. Res. Eng. Technol., vol. 10, no. 6, pp. 174–182, doi: 10.34218/IJARET.10.6.2019.021.

4.      N. Du, M. Zhang, J. Huang, and G. Wang. (2019). A conflict-detecting and early-warning system for multi-plan integration in small cities and towns based on cloud service platform, Smart Cities, vol. 2, no. 3, pp. 388–401, doi: 10.3390/smartcities2030024.

5.      Q. Wang, Y. Chen, H. Guan, O. Lyulyov, and T. Pimonenko. (2022). Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors, Sustain., vol. 14, no. 14, doi: 10.3390/su14148321.

6.      C. Liu. (2021). Infrastructure public–private partnership (Ppp) investment and government fiscal expenditure on science and technology from the perspective of sustainability, Sustain., vol. 13, no. 11, doi: 10.3390/su13116193.

7.      F. M. Suryani, C. Mutiawati, and R. Faisal. (2023). The Influence of Service Performance And Passenger Satisfaction On Public Transport Loyalty In A Small City In A Developing Country, pp. 644–655.

8.      W. Tri Hermani, A. Setyawan, Syafi’i, and E. Gravitiani. (2023). Analysis of Willingness to Pay for Toll Users in Central Java Province, E3S Web Conf., vol. 425, p. 03001, doi: 10.1051/e3sconf/202342503001.

9.      M. Shatanawi, A. Alatawneh, and F. Mészáros. (2022). Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest, Res. Transp. Econ., vol. 95, no. August, doi: 10.1016/j.retrec.2022.101231.

10.   M. Bagheri, H. Ghafourian, M. Kashefiolasl, M. T. S. Pour, and M. Rabbani. (2020). Travel management optimization based on air pollution condition using markov decision process and genetic algorithm (case study: Shiraz city), Arch. Transp., vol. 53, no. 1, pp. 89–102, doi: 10.5604/01.3001.0014.1746.

11.   A. Kherraki and R. El Ouazzani. (2022). Deep convolutional neural networks architecture for an efficient emergency vehicle classification in real-time traffic monitoring, IAES Int. J. Artif. Intell., vol. 11, no. 1, pp. 110–120, doi: 10.11591/ijai.v11.i1.pp110-120.

12.   W. T. Hermani, A. Setyawan, and Syafi i. (2023). Estimation of the origin-destination matrix from national road traffic data in Central Java Province using the least squares method, E3S Web Conf., vol. 429, pp. 0–5, doi: 10.1051/e3sconf/202342903006.

13.   W. T. Hermani, A. Setyawan, and E. Gravitiani. (2023). The Influence of Toll Road Operations on the Economy in Central Java Province, Int. J. Transp. Dev. Integr., vol. 7, no. 2, pp. 139–145, doi: 10.18280/ijtdi.070209.

14.   R. Zhang, L. Zhao, X. Qiu, H. Zhang, and X. Wang. (2020). A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models, Appl. Energy, vol. 272, no. February, p. 115180, doi: 10.1016/j.apenergy.2020.115180.

15.   S. Baniya, N. Rocha, and M. Ruta. (2020). Trade effects of the New Silk Road: A gravity analysis, J. Dev. Econ., vol. 146, no. February, p. 102467, doi: 10.1016/j.jdeveco.2020.102467.

16.   R. Pokharel, L. Bertolini, M. te Brömmelstroet, and S. R. Acharya. (2021). Spatio-temporal evolution of cities and regional economic development in Nepal: Does transport infrastructure matter?, J. Transp. Geogr., vol. 90, no. November 2020, doi: 10.1016/j.jtrangeo.2020.102904.

17.   F. Simini, G. Barlacchi, M. Luca, and L. Pappalardo. (2021). A Deep Gravity model for mobility flows generation, Nat. Commun., vol. 12, no. 1, doi: 10.1038/s41467-021-26752-4.

18.   Hasanuddin, A. Setyawan, and B. Yulianto. (2018). Evaluation of Road Performance Based on International Roughness Index and Falling Weight Deflectometer, IOP Conf. Ser. Mater. Sci. Eng., vol. 333, no. 1, doi: 10.1088/1757-899X/333/1/012090.

19.   Y. Song, D. Thatcher, Q. Li, T. McHugh, and P. Wu. (2021). Developing sustainable road infrastructure performance indicators using a model-driven fuzzy spatial multi-criteria decision making method, Renew. Sustain. Energy Rev., vol. 138, no. February 2020, p. 110538, doi: 10.1016/j.rser.2020.110538.

20.   E. V. Zhustareva and V. I. Bochkarev. (2020). The complex method of estimation of highway maintenance quality taking into account the International Roughness Index, IOP Conf. Ser. Mater. Sci. Eng., vol. 832, no. 1, doi: 10.1088/1757-899X/832/1/012035.

21.   P. Shivananda and S. K. Khatua. (2022). Study on International Road Roughness index (IRI) using Smart phone application from REVA University to Kodigehalli gate, Bangalore, India, IOP Conf. Ser. Mater. Sci. Eng., vol. 1255, no. 1, p. 012020, doi: 10.1088/1757-899x/1255/1/012020.

22.   D. J. Forkenbrock and G. Weisbrod. (2001). Guidebook for Assessing the Social and Economic Effects of Transportation Projects, NCHRP Report 456.

23.   T. Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier. (2022). Deep Learning-Based Object Detection and Scene Perception under Bad Weather Conditions, Electron., vol. 11, no. 4, pp. 1–11, doi: 10.3390/electronics11040563.

24.   X. Xu et al. (2022). Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN, Sensors, vol. 22, no. 3, doi: 10.3390/s22031215.

25.   J. Santos, C. Torres-Machi, S. Morillas, and V. Cerezo. (2022). A fuzzy logic expert system for selecting optimal and sustainable life cycle maintenance and rehabilitation strategies for road pavements, Int. J. Pavement Eng., vol. 23, no. 2, pp. 425–437, doi: 10.1080/10298436.2020.1751161.

26.   M. Jurkevičius, V. Puodžiukas, and A. Laurinavičius. (2020). Implementation of road performance calculation models used in strategic planning systems for Lithuania conditions, Balt. J. Road Bridg. Eng., vol. 15, no. 3, pp. 146–156, doi: 10.7250/bjrbe.2020-15.489.

27.   O. Martinez, J. M. Garcia, and N. Kumar. (2021). The gravity model as a tool for decision making. Some highlights for Indian roads, Transp. Res. Procedia, vol. 58, no. 2019, pp. 333–339, doi: 10.1016/j.trpro.2021.11.045.

28.   Z. Wu, M. Huang, A. Zhao, and Z. Lan. (2021). Urban Traffic Planning and Traffic Flow Prediction based on ulchis gravity model and Dijkstra algorithm. J. Phys. Conf. Ser., vol. 1972, no. 1, doi: 10.1088/1742-6596/1972/1/012080.