Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

CYLINDER AND PISTON: MATERIAL SELECTION IN THE DESign PHASE


DOI: 10.5937/jaes0-52884 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 22 article 1242 pages: 789-803

Do Duc Trung
Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi, Vietnam

Nazlı Ersoy*
Department of Business Administration, Osmaniye Korkut Ata University, Osmaniye, Türkiye

Vo Thi Nhu Uyen
Department of Academic Affairs, Hanoi University of Industry, Hanoi, Vietnam

The piston and cylinder constitute an inseparable pair, playing a crucial role in both the mechanical and hydraulic industries. They are frequently employed to convert linear motion into rotational motion in various types of engines and are especially valuable for heavy-duty applications. Material selection for these components is conducted during the product design phase. This study aimed to identify the optimal material for each type of product. To determine the best material, a ranking of materials was carried out using the CoCoSo (COmbined COmpromise SOlution) method, with scores for criteria calculated using the Entropy method. Nine materials for cylinder construction were evaluated, including S355JR, S275JR, S235JR, BS97007M20, R35, R45, IS1030GRADE, AISI304, and 60-40-18. Additionally, seven materials for piston construction were considered: 332-T5, A336, 242-T5, 333.0-F, A213.0 F, AISI308, and A319.0F. The Entropy-CoCoSo approach was employed to rank the materials for each case (cylinder material and piston material). The results indicated that AISI304 is the optimal material for cylinder manufacturing, while A336 is the best material for piston manufacturing. Furthermore, the study extensively examined the impact of different weighting methods (Entropy, WENSLO, CRITIC, ROC, RS, EW) and normalization techniques (sum, vector, max, max-min, peldschus, decimal) on CoCoSo method results using an innovative sensitivity analysis approach, analyzing the techniques according to their sensitivity levels.

View article

1.      Alshalal, I., Al-Zuhairi, H. M. I., Abtan, A. A., Rasheed, M., Asmail, M. K. (2023). Characterization of wear and fatigue behavior of aluminum piston alloy using alumina nanoparticles. Journal of the Mechanical Behavior of Materials, vol. 32, no. 1, 1-7. DOI:10.1515/jmbm-2022-0280

2.      Skryabin, M. L., Kuklin, S. M. (2020). Peculiarities of choice of materials for pistons of heat engines. IOP Conference Series: Materials Science and Engineering, vol. 862, No. 3, 1-5. DOI:10.1088/1757-899X/862/3/032096

3.      Byun, H. S., Lee, S. H. (2017). Design of a piston forging process using a hybrid Taguchi method and multiple criteria decision-making. Journal of Mechanical Science and Technology, vol. 31, 1869-1876. DOI:10.1007/s12206-017-0334-7

4.      Khatke, S., Fulzele, S., Kadam, S., Kamble, A. (2021). The selection of hydraulic cylinder using multi-attribute decision-making methods. Journal of Physical Chemistry & Biophysics, vol. 11, no. 7, 1-8, DOI:10.2139/ssrn.3964510

5.      Mahle GmbH. (2016a). Crankcase and cylinder liners. Braun, M. (Ed.), Cylinder components. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden, pp. 97-128.

6.      Ali, A. M. (2023). A multi-criteria decision-making approach for piston material selection under single-valued trapezoidal neutrosophic sets. Neutrosophic and Information Fusion, vol. 2, no. 1, 23-34. DOI:10.54216/NIF.020102

7.      Mahle GmbH. (2016b). Piston pins and piston pin circlips. In: Cylinder components. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden, pp. 25-46.

8.      Yazdani, M., Zavadskas, E. K., Ignatius, J., Abad, M. D. (2016). Sensitivity analysis in MADM methods: Application of material selection. Inzinerine Ekonomika-Engineering Economics, vol. 27, no. 4, 382–391, DOI:10.5755/j01.ee.27.4.14005

9.      Fattouh, M. (2023). Hybrid MCDM model of ARAS-TOPSIS-GRA for materials selection problem. Journal of Engineering Research, vol. 7, no. 2, 1-9. DOI:10.21608/ERJENG.2023.200188.1164

10.   Peng, C., Feng, D., Guo, S. (2021). Material selection in green design: A method combining DEA and TOPSIS. Sustainability, vol. 13, no. 10, 1-14DOI:10.3390/su13105497

11.   Bhaskar, S., Kumar, M., Patnaik, A. (2023). Ranking optimization investigation using hybrid AHP-TOPSIS MCDM technique on hybrid AA2024―Ceramic Particulate Alloy Composite Materials Prepared through Stir Casting. DOI:10.21203/rs.3.rs-2593385/v1

12.   Zakeri, S., Chatterjee, P., Konstantas, D., Ecer, F. (2023). A decision analysis model for material selection using simple ranking process. Scientific Reports, vol. 13, no. 1, 1-34, DOI:10.1038/s41598-023-35405-z

13.   Rahim, A. A., Musa, S. N., Ramesh, S., Lim, M. K. (2021). Development of a fuzzy-TOPSIS multi-criteria decision-making model for material selection with the integration of safety, health and environment risk assessment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(7), 1532-1550. DOI:10.1177/1464420721994269

14.   Fulzele, S. B., Khatke, S. B., Kadam, S. J., Kamble, A. G. (2022). Application of multi-attribute decision-making methods for the selection of conveyor. Soft Computing, vol. 26, no. 19, 9873-9881. DOI:10.21203/rs.3.rs-1033410/v2

15.   Chatterjee, S., Chakraborty, S. (2023). Application of the R method in solving material handling equipment selection problems. Decision Making: Applications in Management and Engineering, vol. 6, no. 2) 74-94. DOI:10.31181/dmame622023391.

16.   Lohakare, P., Bewoor, A., Kumar, R., Said, N. M., Sharifpur, M. (2022). Benchmark using multi criteria decision making (MCDM) technique to optimally select piston material. Engineering Analysis with Boundary Elements, vol. 142, 52-60. DOI:10.1016/j.enganabound.2022.05.025

17.   Ramachandran, M., Ragavendran, U., Fegade, V. (2018). Selection of used piston for remanufacturing using fuzzy TOPSIS optimization. Antonio J. Tallón-Ballesteros, Kaicheng Li (Eds.), Fuzzy Systems and Data Mining IV, IOS Press, pp. 61-67.

18.   Chatterjee, S., Chakraborty, S. (2022). A multi-attributive ideal-real comparative analysis-based approach for piston material selection. Opsearch, vol. 59, no. 1, 207-228. DOI:10.1007/s12597-021-00536-2.

19.   Dev, S., Aherwar, A., Patnaik, A. (2020). Material selection for automotive piston component using Entropy-VIKOR method. Silicon, vol. 12, no. 1, 155-169. DOI:10.1007/s12633-019-00110-y.

20.   Li, A., Zhao, J., Gong, Z., Lin, F. (2016). Optimal selection of cutting tool materials based on multi-criteria decision-making methods in machining al-si piston alloy. The International Journal of Advanced Manufacturing Technology, vol. 86, 1055-1062. DOI:10.1007/s00170-015-8200-1

21.   Chaitanya, K. L., Srinivas, K. (2019). Sensitive analysis on selection of piston material using MADM techniques. Strojnícky časopis-Journal of Mechanical Engineering, vol. 69, no. 4, 45-56. DOI:10.2478/scjme-2019-0042.

22.   Megel, M. C., Bailey, G. E. (2014). Material and process selection—cylinder blocks and heads. Encyclopedia of Automotive Engineering, 1-10. DOI:10.1002/9781118354179.auto135

23.   Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., Turskis, Z. (2019a). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, vol. 57, no. 9, 2501-2519. DOI:10.1108/MD-05-2017-0458

24.   Topal, A. (2021). Financial performance analysis of electricity generation companies with multi-criteria decision making: Entropy-based Cocoso method. Business & Management Studies: An International Journal, vol. 9, no. 2, 532-546. DOI:10.15295/bmij.v9i2.1794

25.   Ulutaş, A., Balo, F., Sua, L., Karabasevic, D., Stanujkic, D., Popovic, G. (2021a). Selection of insulation materials with PSI-CRITIC based CoCoSo method. Revista de la Construcción, vol. 20, no. 2, 382-392. DOI:10.7764/RDLC.20.2.382

26.   Tirkolaee, E. B., Torkayesh, A. E. (2022). A cluster-based stratified hybrid decision support model under uncertainty: sustainable healthcare landfill location selection. Applied Intelligence, vol. 52, no. 12, 13614-13633. DOI:10.1007/s10489-022-03335-4

27.   Yazdani, M., Wen, Z., Liao, H., Banaitis, A., Turskis, Z. (2019b). A grey combined compromise solution (CoCoSo-G) Method for supplier selection in construction management. Journal of Civil Engineering and Management, vol. 25, no. 8, 858-874. DOI:10.3846/jcem.2019.11309

28.   Peng, X., Huang, H. (2020). Fuzzy decision making method based on CoCoSo with CRITIC for financial risk evaluation. Technological and Economic Development of Economy, vol. 26, no. 4, 695-724. DOI:10.3846/tede.2020.11920

29.   Ulutaş, A., Popovic, G., Radanov, P., Stanujkic, D., Karabasevic, D. (2021b). A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technological and Economic Development of Economy, vol. 27, no. 5, 1227-1249. DOI:10.3846/tede.2021.15058

30.   Purohit, P., Ramachandran, M. (2015). Selection of fywheel material using multicriteria decision making fuzzy TOPSIS. Indian J. Sci. Technol. Vol. 8, no. 33, 1–5. DOİ: 10.17485/ijst/2015/v8i33/80028

31.   Maity, R., Mishra, R., Pattnaik, P. K., Pandey, A. (2023). Selection of sustainable material for the construction of UAV aerodynamic wing using MCDM technique. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.12.025.

32.   Kumar, R., Ray, A. (2015). Optimal selection of material an eclectic decision. J. Inst. Eng. (India): Series C, vol. 96, no. 1, 29–33. DOİ:10.1007/s40032-014-0123-3

33.   Bhattacharyya, O., Chakraborty, S. (2015). Q-analysis in materials selection. Decis. Sci. Letts., vol. 4, no. 1, 51–62. DOİ:10.5267/j.dsl.2014.9.001.

34.   Hosouli, S., Elvins, J., Searle, J., Boudjabeur, S., Bowyer, J., Jewell, E. (2023). A multi-criteria decision making (MCDM) methodology for high temperature thermochemical storage material selection using graph theory and matrix approach. Materials & Design, vol. 227, no. 20231-10. DOI:10.1016/j.matdes.2023.111685

35.   Das, D., Bhattacharya, S., Sarkar, B. (2016). Decision-based design-driven material selection: A normativeprescriptive approach for simultaneous selection of material and geometric variables in gear design. Mater. Des., vol. 92, 787–793. DOİ:10.1016/j.matdes.2015.12.064.

36.   Yazdani, M., Jahan, A., Zavadskas, E.K. (2017). Analysis in material selection: influence of normalization tools on COPRAS-G. Econ. Comput. Econ. Cybern. Stud. Res., vol. 1, no. 51, 1–16.

37.   Moradian, M., Modanloo, V., Aghaiee, S. (2018). Comparative analysis of multi criteria decision making techniques for material selection of brake booster valve body. J. Trafc Transp. Eng., vol. 6, no. 5, 526–534. DOİ:10.1016/j.jtte.2018.02.001

38.   Zindani, D., Maity, S.R., Bhowmik, S., Chakraborty, S. (2017). A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis. Int. J. Mater. Res., vol. 108, no. 5, 345–354. DOİ:10.3139/146.111489

39.   Van Dua, T., Van Duc, D., Bao, N. C. (2024). Integration of objective weighting methods for criteria and MCDM methods: Application in material selection. EUREKA: Physics and Engineering, no. 2, 131-148. DOI:10.21303/2461-4262.2024.003171

40.   Kumar, S., Ahijith Kumar, P. V., Bharti, K., Patnaik, L., Ranjan Maity, S., Łepicka, M. (2024). Coating material selection for bulk metal forming dies: A MEREC-integrated approach with multiple MCDM methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-16. DOI:10.1007/s12008-024-02044-1

41.   Omosa, G. B., Mwema, F. M., Akinlabi, E. T., Jen, T. C., Mutua, J. M. (2024). Matrixphase material selection for shape memory polymer composites: A comparative analysis of multicriteria decisionmaking. Polymer Engineering & Science, vol. 64, no. 7, 3363-3378. DOI:10.1002/pen.26775

42.   Hassan, R., Arfeen, Z. A., Azam, M. K., Akhtar, Z. U. A., Siddique, A., Rashid, M. (2024). Determination of the best materials for development and designing product using a multi-criteria decision-making. Railway Sciences. Vol. ahead-of-print No. ahead-of-print. DOI:10.1108/RS-12-2023-0050

43.   Alinezhad, A., Khalili, J. (2024). MCDM, DEA, and their relationship in materials selection. Jain, P., Abhishek, K. Chatterjee, P. (Eds.), Decision-Making Models and Applications in Manufacturing Environments, Apple Academic Press, pp. 1-45.

44.   Şahin, M. (2024). Ensemble multi-attribute decision-making for material selection problems. Soft Computing, vol. 28, no. 6, 5437-5460. DOI:10.1007/s00500-023-09296-1

45.   Mikic, D., Desnica, E., Asonja, A., Stojanovic, B., Epifanic-Pajic, V. (2016). Reliability analysis of ball bearing on the crankshaft of piston compressors. Journal of the Balkan Tribological Association, vol. 22, no. 4, 5060–5070.

46.   Wang, Z., Baydaş, M., Stević, Ž., Özçil, A., Irfan, S. A., Wu, Z., Rangaiah, G. P. (2023). Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods. Demonstratio Mathematica, vol. 56, no. 1, 20230117.

47.   Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathematical Modelling, vol. 34, no. 7, 1779-1787. DOI:10.1016/j.apm.2009.09.022

48.   Zeleny, M. (1982). Multiple Criteria Decision Making, McGraw-Hill, New York.

49.   Hussain, S. A. I., Chandra, H., Mandal, U. K. (2022). Comparison of cross-entropy based MCDM approach for selection of material in sugar industry, Márquez, F. P. G. (Ed.), Advances in Decision Making, pp. 1-25.

50.   Zhu, Y., Tian, D., Yan, F. (2020). Effectiveness of Entropy weight method in decisionmaking. Mathematical Problems in Engineering, vol. 2020, no. 1, 1-5DOI:10.1155/2020/3564835

51.   Puška, A., Lukić, M., Božanić, D., Nedeljković, M., Hezam, I. M. (2023). Selection of an insurance company in agriculture through hybrid multi-criteria decision-making. Entropy, vol. 25, no. 6, 1-19DOI:10.3390/e25060959

52.   Trung, D. D., Thinh, H. X. (2021). A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Advances in Production Engineering & Management, vol. 16, no. 4, 443-456. DOI:10.14743/apem2021.4.412

53.   Thinh, X. H. (2023). Multi-objective optimization of turning process by FUCA method. Strojnícky Časopis-Journal of Mechanical Engineering, vol. 73, no. 1, 55-66. DOI:10.2478/scjme-2023-0005

54.   Adalı, E. A., Işık, A. T. (2017). CRITIC and MAUT methods for the contract manufacturer selection problem. European Journal of Multidisciplinary Studies, vol. 2, no. 5, 88-96. DOI:10.26417/ejms.v5i1.p93-101

55.   Gunantara, N. (2018). A review of multi-objective optimization: methods and its applications. Cogent Engineering, vol. 5, no. 1, 1502242. DOI:10.1080/23311916.2018.1502242

56.   Ecer, F., Küçükönder, H., Kayapınar Kaya, S.Görçün, Ö.F. (2023). Sustainability performance analysis of micromobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo frameworkTransportation Research Part A: Policy and Practice, vol. 172, 103667, DOİ: 10.1016/J.TRA.2023.103667.

57.   Pamucar, D., Ecer, F., Gligorić, Z., Gligorić, M., Deveci, M. (2023). A novel WENSLO and ALWAS multicriteria methodology and its application to green growth performance evaluation. IEEE Transactions on Engineering Management, vol. 71, no. 2024, 9510-9525. DOİ: 10.1109/TEM.2023.3321697

58.   Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., Bahraminasab, M. (2012). A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, no. 58, 411-420. DOI:10.1007/s00170-011-3366-7

59.   Wang, C. N., Le, T. Q., Chang, K. H., Dang, T. T. (2022). Measuring road transport sustainability using MCDM-based Entropy objective weighting method. Symmetry, vol. 14, no. 5, 1-19. DOI:10.3390/sym14051033

60.   Ecer, F., Pamucar, D. (2022). A novel LOPCOWDOBI multicriteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, no. 112, 102690. DOI:10.1016/j.omega.2022.102690

61.   Elma, O. E., Stević, Ž., Baydaş, M. (2024). An Alternative Sensitivity Analysis for the Evaluation of MCDA Applications: The significance of brand value in the comparative financial performance analysis of BIST high-end companies. Mathematics, 12(4), 520. DOI:10.3390/math12040520

62.   Mhlanga, S. T., Lall, M. (2022). Influence of normalization techniques on multi-criteria decision-making methods. Journal of Physics: Conference Series, vol. 2224, no. 1, 1-12. DOI 10.1088/1742-6596/2224/1/012076

63.   Aytekin, A. (2021). Comparative analysis of the normalization techniques in the context of MCDM problems. Decision Making: Applications in Management and Engineering, vol. 4, no. 2, 1-25. DOI:10.31181/dmame210402001a

64.   Vafaei, N., Ribeiro, R. A., Camarinha-Matos, L. M. (2020). Selecting normalization techniques for the analytical hierarchy process. Doctoral Conference on Computing, In Electrical and Industrial Systems, 43-52, Springer.

65.   Wang Y.M.M., Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Math Comput Model, vol. 51, no. 1–21–12. DOİ:10.1016/j.mcm.2009.07.016

66.   Van Delft, A., Nijkamp, P. (1977). Multi-Criteria Analysis and Regional Decision-Making, Studies in Applied Regional Science, Springer.

67.   Stopp, F. (1975). Variantenvergleich durch Matrixspiele, Wissenschaftliche Zeitschrift der Hochschule für Ba