Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

FLOW CHARACTERISTICS OF INK-JET INKS USED FOR FUNCTIONAL PRINTING


DOI: 10.5937/jaes13-9575
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 13 article 330 pages: 207-212

Katarina Dimic-Misic
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

Alp Karakoc
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

Merve Ozkan
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

Syed Ghufran Hashmi
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

Thad Maloney
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

Jouni Paltakari
Aalto University, School of Chemical Technology, FI-00076 AALTO, Finland

The rheology-related effects of nozzle clogging in inkjet printing can seriously affect ink ejection rate and result in irregular droplet trajectory, resulting in poor printing results. In this study three different inkjet inks, used for functional printing with a Dimatix materials inkjet printer, are investigated rheologically. In connection with rheological observation a novel method of inkjet trajectory image analysis gives insight into the irregularity of directional deviation due to clogging of nozzles of the printer It is found that the type of solvent used in the ink formulation has an important influence on the rheological behaviour in the printing regime, which directly has an effect on ink-droplet trajectory and contact characteristic with the substrate.

View article

Bansal N. P, Singh J. P., Schneider H, Innovative processing and synthesis of ceramics, glasses and composites (VIII), Proceedings of 106th Annual Meeting of the American Ceramic Society, Indiana, USA (2004).

Barnes H. A. (1989) Shear thickening (“dilatancy”) in suspensions of non-aggregating solid particles dispersed in Newtonian liquids, Journal of Rheology (33) 329-366

Cesarano III, J., Segalman, R., Calvert, P. (1998). Robocasting provides moldless fabrication from slurry deposition. Ceramic Industry, 148(4) 94-102.

Conrad, J. C., Ferreira, S. R., Yoshikawa, J., Shepherd, R. F., Ahn, B. Y., Lewis, J. A. (2011). Designing colloidal suspensions for directed materials assembly. Current Opinion in Colloid & Interface Science, 16(1), 71-79.

Derby, B. (2010). Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 40, 395-414.

Derby B., Reis N. (2003). Inkjet printing of highly loaded particulate suspensions. MRS bulletin, 28(11), 815-818

Gardini H., Matteucci F, .Blosi M, Costa A. L, Dondi M., Galassi C. , .Raimondo M., .Baldi G., Cinottti E. (2006) Chemico-physical properties of nano-sized ceramic inks for ink-jet printing, In Qualicer 2006, IX World Congress on Ceramic Tile Quality (Vol. 3).

Hoath, S. D., Vadillo, D. C., Harlen, O. G., Mc- Ilroy, C., Morrison, N. F., Hsiao, W. K., Jung S, Martin G.D., Hutchings, I. M. (2014). Inkjet printing of weakly elastic polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 205, 1-10.

Hoth, C. N., Choulis, S. A., Schilinsky, P., Brabec, C. J. (2007) High photovoltaic performance of inkjet printed polymer: fullerene blends. Advanced Materials, 19(22), 3973-3978.

Jang, D., Kim, D., Moon, J., Influence of Fluid Physical Properties on Ink-Jet Printability, Langmuir, 2009, 25 (5), pp 2629–2635

Karakoc, A, Freund, J. (2013). A direct simulation method for the effective in-plane stiffness of cellular materials. International Journal of Applied Mechanics 5 (3): 1350034 (13 pages).

Lewis, J. A., Smay, J. E., Stuecker, J., Cesarano, J. (2006). Direct Ink Writing of Three Dimensional Ceramic Structures. Journal of the American Ceramic Society, 89(12), 3599-3609.

Le, H. P. (1998), Progress and trends in inkjet printing technology, Journal of Imaging Science and Technology, 42(1), 49-62.

Morrison, N. F., Harlen, O. G. (2010). Viscoelasticity in inkjet printing. Rheologica acta, 49(6), 619-632.

Nahid, M. M., (2012), In Quest of Printed Electrodes for Light–emitting Electrochemical Cells: A comparative Study between Two Silver Inks, Master Thesis 12, 10 Umea University

Sezgin, M., Sankur, B., (2004) “Survey over image thresholding techniques and quantitative performance evaluation”, 13 (1) 146-168

Shore, H. J., Harrison, G. M., (2005). The effect of added polymers on the formation of drops ejected from a nozzle. Journal of Electronic Imaging 13(1): 146–165.

Reitz, T. L., Miller, R. L., (2009) Ink-jet Printing: a versatile method for multilayer solid oxide fuel cells fabrication (Postprint), Journal of the American Ceramic Society 92. 12: 2913-2919.

Tellier, J., Malic, B., Kuscer, D., Trefalt, G., Kosec, M., Ink-Jet Printing of In2O3/ZnO

Teng, W. D, Edirisinghe, M. J., Evans, J. R. G., (1997) Optimization of Dispersion and Viscosity of a Ceramic Jet Printing Ink, Journal of American Ceramic Society, 80(2), 486-494.

Voigt, M. M., Mackenzie, R. C. I., King, S. P., Yau, C. P., Atienzar, P., Dane, J., Keivanidis, P. E., Zadrazil, I., Bradley, D. D. C., Nelson, J., (2012) Gravure printing inverted organic solar cell: the influence of ink properties on film quality and device performance, Solar Energy Materials and Solar Cells, 2012; 105: 77-85.