Volume 23 article 1249 pages: 15-36

Published: Mar 15, 2025

DOI: 10.5937/jaes0-46531

COMPARISON OF GAUSSIAN HEAT FLOW OF FSW RELYing ON VON MISES CRITERION AND CONSTITUTIVE MODELS OF YIELD STRENGTH

Ghassan Shaker Abdul Ridha 1
Ghassan Shaker Abdul Ridha
Affiliations
Middle Technical University, Technical Institute Kut, Department of Electrical Techniques, Baghdad, Iraq
Mohammed Abdulridha Abbas * 2 , 3
Mohammed Abdulridha Abbas
Affiliations
Technical University (ATU), Engineering Technical College-Najaf, Aeronautical Techniques Engineering Department, Najaf, Iraq
University Tun Hussein Onn Malaysia (UTHM Sustainable Manufacturing and Recycling Technology), Advanced Manufacturing and Materials Center (SMART-AMMC), Parit Raja, Malaysia
Correspondence
Mohammed Abdulridha Abbas
Ramin Hashemi 4
Ramin Hashemi
Affiliations
Iran University of Science and Technology, School of Mechanical Engineering, Tehran, Iran
Mohd Amri Lajis 5
Mohd Amri Lajis
Affiliations
Al-Furat Al-Awsat Technical University (ATU), Engineering Technical College-Najaf, Power Mechanics Techniques Engineering Department, Najaf, Iraq
Muhannad Ahmed 5
Muhannad Ahmed
Affiliations
Al-Furat Al-Awsat Technical University (ATU), Engineering Technical College-Najaf, Power Mechanics Techniques Engineering Department, Najaf, Iraq
Open PDF

Abstract

In the Friction Stir Welding (FSW) operation, the role of thermal applied load modeling is no secret to simulate the heat distribution issued from this process. Unfortunately, the previous models implemented in transient mode did not present an accurate model for the moving heat source resulting from FSW operation. The main reason for this issue is attributed to the confidence and deviation ratios, especially with the Gaussian Distribution (GD). Besides, these models did not utilize the constitutive models of yield strength for comparison. Accordingly, the current study aims to present hybrid thermal models adopting 99.75% and 0.25% for confidence and deviation ratios, respectively, where it hybridized the Von Mises criterion with the constitutive models for yield strength to Voce, Hollomon, and Swift. Hence, these models contribute to presenting a comparison study to predict numerically the thermal history and investigate this history experimentally. Therefore, these hybrid models were used with finite element simulation to validate the experimental thermal history of FSW for Al 6061-T6 under 800 rpm, 10 mm/min, and 15 kN for rotational speed, linear velocity, and applied force sequentially. Finally, this validation has proved the dominance of the hybrid model for Von Mises-Voce in predicting the thermal history and peak temperature compared to other hybrid models.

Keywords

FSW thermal history constitutive models von mises strain hardening

Acknowledgements

The authors would like to express their profound gratitude and deepest appreciation to the Ministry of Higher Education and Scientific Research, Iraq. Furthermore, the authors would like to express their special thanks to Sustainable Manufacturing and Recycling Technology-Advanced Manufacturing and Materials Centre (SMART-AMMC), Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia, besides Kut Technical Institute-Middle Technical University, and Engineering Technical College-Najaf/Al-Furat Al-Awsat Technical University (ATU).

References

1.      Roberts, C. E., Bourell, D., Watt, T., Cohen, J., (2016). A novel processing approach for additive manufacturing of commercial aluminum alloys. Physics Procedia, 909-917.

2.      Walde, C., Cote, D., Champagne, V., Sisson, R. (2019). Characterizing the effect of thermal processing on feedstock Al alloy powder for additive manufacturing applications. Journal of Materials Engineering and Performance, vol. 28, no. 2, 601-610, DOI: 10.1007/s11665-018-3550-0

3.      Woo, W., Feng, Z., Wang, X.-L., Brown, D., Clausen, B., An, K., Choo, H., Hubbard, C. R., David, S. A. (2007). In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy. Science and Technology of Welding and Joining, vol. 12, no. 4, 298-303, DOI: 10.1179/174329307X197548

4.      Hwang, Y.-M., Kang, Z.-W., Chiou, Y.-C., Hsu, H.-H. (2008). Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. International Journal of Machine Tools and Manufacture, vol. 48, no. 7-8, 778-787, DOI: 10.1016/j.ijmachtools.2007.12.003

5.      Ji, S., Meng, X., Ma, L., Gao, S. (2016). Effect of groove distribution in shoulder on formation, macrostructures, and mechanical properties of pinless friction stir welding of 6061-O aluminum alloy. The International Journal of Advanced Manufacturing Technology, vol. 87, no. 3051-3058, DOI: 10.1007/s00170-016-8734-x

6.      Liu, X., Sun, Y., Morisada, Y., Fujii, H. (2018). Dynamics of rotational flow in friction stir welding of aluminium alloys. Journal of Materials Processing Technology, vol. 252, no. 643-651, DOI: 10.1016/j.jmatprotec.2017.10.033

7.      Nourani, M., Milani, A., Yannacopoulos, S. (2015). On experimental optimization of friction stir welding of aluminum 6061: understanding processing-microstructure-property relations. The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1425-1441, DOI: 10.1007/s00170-015-6932-6

8.      Trueba, L., Torres, M. A., Johannes, L. B., Rybicki, D. (2018). Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. International Journal of Material Forming, vol. 11, no. 559-570, DOI: 10.1007/s12289-017-1365-4

9.      Fathi, J., Ebrahimzadeh, P., Farasati, R., Teimouri, R. (2019). Friction stir welding of aluminum 6061-T6 in presence of watercooling: Analyzing mechanical properties and residual stress distribution. International Journal of Lightweight Materials and Manufacture, vol. 2, no. 2, 107-115, DOI: 10.1016/j.ijlmm.2019.04.007

10.   Singh, A. K., Sahlot, P., Paliwal, M., Arora, A. (2019). Heat transfer modeling of dissimilar FSW of Al 6061/AZ31 using experimentally measured thermo-physical properties. The International Journal of Advanced Manufacturing Technology, vol. 105, no. 771-783, DOI: 10.1007/s00170-019-04276-y

11.   Hema, P. (2019). Experimental investigations on AA 6061 alloy welded joints by friction stir welding. Cooke, K. O. (Eds.), Aluminium Alloys and Composites. IntechOpen, Croatia, 133.

12.   Montes-González, F. A., Rodríguez-Rosales, N. A., Ortiz-Cuellar, J. C., Muñiz-Valdez, C. R., Gómez-Casas, J., Galindo-Valdés, J. S., Gómez-Casas, O. (2021). Experimental analysis and mathematical model of fsw parameter effects on the corrosion rate of Al 6061-T6-Cu c11000 joints. Crystals, vol. 11, no. 3, 294, DOI: 10.3390/cryst11030294

13.   Rajesh Jesudoss Hynes, N., Vivek Prabhu, M., Shenbaga Velu, P., Kumar, R., Tharmaraj, R., Farooq, M. U., Pruncu, C. I. (2022). An experimental insight of friction stir welding of dissimilar AA 6061/Mg AZ 31 B joints. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 236, no. 6-7, 787-797, DOI: 10.1177/09544054211043474

14.   Abbasi, M., Bagheri, B., Keivani, R. (2015). Thermal analysis of friction stir welding process and investigation into affective parameters using simulation. Journal of Mechanical Science and Technology, vol. 29, no. 861-866, DOI: 10.1007/s12206-015-0149-3

15.   Ajri, A., Rohatgi, N., Shin, Y. C. (2020). Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling. The International Journal of Advanced Manufacturing Technology, vol. 107, no. 4621-4635, DOI: 10.1007/s00170-020-05353-3

16.   Assidi, M., Fourment, L., Guerdoux, S., Nelson, T. (2010). Friction model for friction stir welding process simulation: Calibrations from welding experiments. International Journal of Machine Tools and Manufacture, vol. 50, no. 2, 143-155, DOI: 10.1016/j.ijmachtools.2009.11.008

17.   Jabbari, M. (2013). Effect of the preheating temperature on process time in friction stir welding of Al 6061-T6. Journal of Engineering, vol. 2013, no. DOI: 10.1155/2013/580805

18.   Liu, X., Chen, G., Ni, J., Feng, Z. (2017). Computational fluid dynamics modeling on steady-state friction stir welding of aluminum alloy 6061 to TRIP steel. Journal of Manufacturing Science and Engineering, vol. 139, no. 5, 051004, DOI: 10.1115/1.4034895

19.   Vargas, J. A., Torres, J. E., Pacheco, J. A., Hernandez, R. J. (2013). Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints. Materials & Design (1980-2015), vol. 52, no. 556-564, DOI: 10.1016/j.matdes.2013.05.081

20.   Pamuk, M. T., Savaş, A., Seçgin, Ö., Arda, E. (2018). Numerical simulation of transient heat transfer in friction-stir welding. International Journal on Heat and Technology, vol. no. DOI: 10.18280/ijht.360104

21.   Song, M. Kovacevic, R. (2003). Numerical and experimental study of the heat transfer process in friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217, no. 1, 73-85, DOI: 10.1243/095440503762502297

22.   Song, M. Kovacevic, R. (2003). Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of machine tools and manufacture, vol. 43, no. 6, 605-615, DOI: 10.1016/S0890-6955(03)00022-1

23.   Feng, Z., Wang, X.-L., David, S. A., Sklad, P. S. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding and Joining, vol. 12, no. 4, 348-356, DOI: 10.1179/174329307X197610

24.   Chao, Y. J., Liu, S., Chien, C. H. (2008). Friction stir welding of al 6061T6 thick plates: Part IInumerical modeling of the thermal and heat transfer phenomena. Journal of the Chinese Institute of Engineers, vol. 31, no. 5, 769-779, DOI: 10.1080/02533839.2008.9671431

25.   Atharifar, H., Lin, D., Kovacevic, R. (2009). Numerical and experimental investigations on the loads carried by the tool during friction stir welding. Journal of Materials Engineering and Performance, vol. 18, no. 339-350, DOI: 10.1007/s11665-008-9298-1

26.   Yang, C., Wu, C., Lv, X. (2018). Numerical analysis of mass transfer and material mixing in friction stir welding of aluminum/magnesium alloys. Journal of Manufacturing Processes, vol. 32, no. 380-394, DOI: 10.1016/j.jmapro.2018.03.009

27.   Zhang, J., Shen, Y., Li, B., Xu, H., Yao, X., Kuang, B., Gao, J. (2014). Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Materials & Design, vol. 60, no. 94-101, DOI: 10.1016/j.matdes.2014.03.043

28.   Mohamadreza, N., Abbas S, M., Spiro, Y. (2011). Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: A review and case study. Engineering, vol. 2011, no. DOI: 10.4236/eng.2011.32017

29.   Raouache, E., Driss, Z., Guidara, M., Khalfallah, F. (2016). Effect of the tool geometries on thermal analysis of the friction stir welding. International Journal of Mechanics and Applications, vol. 6, no. 1, 1-7, DOI: 10.5923/j.mechanics.20160601.01

30.   Riahi, M. Nazari, H. (2011). Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. The International Journal of Advanced Manufacturing Technology, vol. 55, no. 143-152, DOI: 10.1007/s00170-010-3038-z

31.   Liu, X., Lan, S., Ni, J. (2015). Thermal mechanical modeling of the plunge stage during friction-stir welding of dissimilar Al 6061 to TRIP 780 steel. Journal of manufacturing science and engineering, vol. 137, no. 5, 051017, DOI: 10.1115/1.4031188

32.   Salloomi, K. N. (2019). Fully coupled thermomechanical simulation of friction stir welding of aluminum 6061-T6 alloy T-joint. Journal of Manufacturing Processes, vol. 45, no. 746-754, DOI: 10.1016/j.jmapro.2019.06.030

33.   Neto, D. M. Neto, P. (2013). Numerical modeling of friction stir welding process: a literature review. The International Journal of Advanced Manufacturing Technology, vol. 65, no. 115-126, DOI: 10.1007/s00170-012-4154-8

34.   Esmaeili, A., Besharati Givi, M., Zareie Rajani, H. (2012). Experimental investigation of material flow and welding defects in friction stir welding of aluminum to brass. Materials and Manufacturing Processes, vol. 27, no. 12, 1402-1408, DOI: 10.1080/10426914.2012.663239

35.   Sun, Y., Fujii, H., Takaki, N., Okitsu, Y. (2013). Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Materials & design, vol. 47, no. 350-357, DOI: 10.1016/j.matdes.2012.12.007

36.   Jun, C., Li, F.-g., SUN, Z.-k. (2017). Tensile stress–strain behavior of metallic alloys. Transactions of Nonferrous Metals Society of China, vol. 27, no. 11, 2443-2453, DOI: 10.1016/S1003-6326(17)60271-1

37.   Suryawanshi, J., Singh, G., Msolli, S., Jhon, M. H., Ramamurty, U. (2021). Tension-compression asymmetry and shear strength of titanium alloys. Acta Materialia, vol. 221, no. 117392, DOI: 10.1016/j.actamat.2021.117392

38.   Moore, J., Bibby, M., Goldak, J., Santyr, S., (1985). A comparison of the point source and finite element schemes for computing weld cooling. Joining division council university research symposium. 5. 1985 International welding congress, 1-9.

39.   Sabari, S. S., Malarvizhi, S., Balasubramanian, V., Reddy, G. M. (2016). Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy. Defence Technology, vol. 12, no. 4, 324-333, DOI: 10.1016/j.dt.2016.02.003

40.   Çengel, Y. A. (2009). Introduction to Thermodynamics and Heat Transfer. McGraw-Hill,

41.   Çengel, Y. A. Ghajar, A. J. (2019). Heat and Mass Transfer: Fundamentals & Applications. McGraw-Hill Education,

42.   Ozisik, M. N., McGraw-Hill Latinoamericana. Transferencia de calor, from https://www.worldcat.org/title/transferencia-de-calor/oclc/730290212, accessed on 5-9-2023.

43.   Engineers, A. I. o. C. (1990). Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. American Institute of Chemical Engineers,

44.   Howard E. Boyer, T. L. G. (1985). Handbook, ASM Metals. American Society for Metals, Metals Park, Ohio,

45.   Totten, G. E. MacKenzie, D. S. (2003). Handbook of Aluminum: Volume 2: Alloy production and materials manufacturing. CRC press,

46.   Wong, J. C. (2008). The correspondence between experimental data and computer simulation of friction stir welding (FSW). West Virginia University,

47.   Spencer, A. J. M. (2004). Continuum mechanics. Courier Corporation,

48.   Papoulis, A. (1991). Random variables and stochastic processes. McGraw Hill,

49.   Papoulis, A. Unnikrishna Pillai, S. (2002). Probability, random variables and stochastic processes.

50.   Cox, D. R. (2018). Applied statistics-principles and examples. Routledge,

51.   Lane, D. M., Scott, D., Hebl, M., Guerra, R., Osherson, D., Zimmer, H. (2017). Introduction to statistics, online edition. Rice University, University of Houston Clear Lake, and Tufts University, vol. no.

52.   Dorbane, A., Ayoub, G., Mansoor, B., Hamade, R., Imad, A. (2017). Effect of temperature on microstructure and fracture mechanisms in friction stir welded Al6061 joints. Journal of Materials Engineering and Performance, vol. 26, no. 2542-2554.

53.   Kaid, M., Zemri, M., Brahami, A., Zahaf, S. (2019). Effect of friction stir welding (FSW) parameters on the peak temperature and the residual stresses of aluminum alloy 6061-T6: Numerical modelisation. International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 13, no. 797-807.

54.   Zina, N., Zahaf, S., Bouaziz, S. A., Brahami, A., Kaid, M., Chetti, B., Najafi Vafa, Z. (2019). Numerical simulation on the effect of friction stir welding parameters on the peak temperature, von Mises stress, and residual stresses of 6061-T6 aluminum alloy. Journal of Failure Analysis and Prevention, vol. 19, no. 1698-1719.

55.   Heumann, C. Shalabh, M. S. (2016). Introduction to statistics and data analysis. Springer,

56.   Lee, B., Yoon, S., Lee, J. W., Kim, Y., Chang, J., Yun, J., Ro, J. C., Lee, J.-S., Lee, J. H. (2020). Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS nano, vol. 14, no. 12, 17125-17133.

57.   Ott, R. Longnecker, M. (2010). An introduction to statistical methods and data analysis. Cengage Learning Inc.,

58.   Cheng, J., Ling, Y., De Waele, W. (2024). An ANN Hardness Prediction Tool Based on a Finite Element Implementation of a Thermal–Metallurgical Model for Mild Steel Produced by WAAM. Metals, vol. 14, no. 5, 556.

59.   Meng, Z., Cai, Z., Feng, J., Ma, H., Zhang, H., Li, S. (2024). Braille Character Segmentation Algorithm Based on Gaussian Diffusion. Computers, Materials & Continua, vol. 79, no. 1.

60.   Al-Roubaiy, A. O., Nabat, S. M., Batako, A. D. (2014). Experimental and theoretical analysis of friction stir welding of Al–Cu joints. The International Journal of Advanced Manufacturing Technology, vol. 71, no. 1631-1642, DOI: 10.1007/s00170-013-5563-z

61.   Guo, J., Chen, H., Sun, C., Bi, G., Sun, Z., Wei, J. (2014). Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Materials & Design (1980-2015), vol. 56, no. 185-192, DOI: 10.1016/j.matdes.2013.10.082

62.   Jin, Z., Minerals, M., Meeting, M. S., Minerals, M., Shaping, M. S., Committee, F. (2003). Hot Deformation of Aluminum Alloys III: 2003 TMS Annual Meeting, San Diego, California, March 2-6, 2003. TMS, University of Michigan.

63.   Las-Casas, M. S., de Ávila, T. L. D., Bracarense, A. Q., Lima, E. J. (2018). Weld parameter prediction using artificial neural network: FN and geometric parameter prediction of austenitic stainless steel welds. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 1-9.

64.   Panda, B. N., Babhubalendruni, M. R., Biswal, B. B., Rajput, D. S., (2015). Application of artificial intelligence methods to spot welding of commercial aluminum sheets (BS 1050). Proceedings of Fourth International Conference on Soft Computing for Problem Solving: SocProS 2014, Volume 1, 21-32.

65.   Cabibbo, M., Paoletti, C., Ghat, M., Forcellese, A., Simoncini, M. (2019). Post-FSW cold-rolling simulation of ECAP shear deformation and its microstructure role combined to annealing in a FSWed AA5754 plate joint. Materials, vol. 12, no. 9, 1526.

66.   Jia, C., Wu, L., Xue, P., Ni, D., Xiao, B., Ma, Z. (2022). Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation. Journal of Materials Science & Technology, vol. 130, no. 112-123.

67.   Xia, Y., Yang, W., Yu, Y., Teng, H., Cheng, Q. (2023). Study of Flow Stress Models and Ductile Fracture Criteria for CHN327 Nickel-Based Superalloy. Materials, vol. 16, no. 6, 2232, DOI: 10.3390/ma16062232

68.   Fahimpour, V., Sadrnezhaad, S., Karimzadeh, F. (2012). Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Materials & Design, vol. 39, no. 329-333, DOI: 10.1016/j.matdes.2012.02.043

69.   Liu, T.-S., Qiu, F., Yang, H.-Y., Shu, S.-L., Xie, J.-F., Jiang, Q.-C., Zhang, L.-C. (2023). Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al 6061 alloys. Materials Science and Engineering: A, vol. 871, no. 144929, DOI: 10.1016/j.msea.2023.144929

70.   Rathinasuriyan, C. Kumar, V. S. (2017). Experimental investigation of weld characteristics on submerged friction stir welded 6061-T6 aluminum alloy. Journal of Mechanical Science and Technology, vol. 31, no. 3925-3933, DOI: 10.1007/s12206-017-0738-4

71.   Hamilton, C., Sommers, A., Dymek, S. (2009). A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions. International Journal of Machine Tools and Manufacture, vol. 49, no. 3-4, 230-238, DOI: 10.1016/j.ijmachtools.2008.11.004

72.   Jamshidi Aval, H., Serajzadeh, S., Kokabi, A. (2012). Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061. The International Journal of Advanced Manufacturing Technology, vol. 61, no. 149-160, DOI: 10.1007/s00170-011-3713-8

73.   Mishra, R. S. Ma, Z. (2005). Friction stir welding and processing. Materials science and engineering: R: reports, vol. 50, no. 1-2, 1-78.

74.   Arbegast, W. Hartley, P. (1999). Friction stir weld technology development at Lockheed Martin Michoud Space System--an overview. ASM International, Trends in Welding Research(USA), vol. no. 541-546.